1 INTRODUÇÃO

Este trabalho foi feito com o intuito de apresentar os protocolos da Camada de Enlace e suas funções, citando exemplos de protocolos em linguagem C. Dentre os protocolos existentes da Camada de Enlace este trabalho abordara os protocolos elementares de enlace de dados que são: Protocolo Simplex sem restrição, Protocolo Simplex stop-and-wait e Protocolo Simplex para canal com ruído; Os protocolos de janelas deslizantes que são: Protocolo de janela deslizante de um bit, Protocolo que utiliza go back n e Protocolo que utiliza retransmissão seletiva; e dois Protocolos de enlace de dados que são: HDLC (High-Ievel Data Link Control) e A camada de enlace de dados na Internet.
2 PROTOCOLOS ELEMENTARES DE ENLACE DE DADOS

Como uma introdução ao estudo dos protocolos, vamos começar examinando três protocolos com grau de complexidade crescente. Antes de examinarmos os protocolos, é útil tornar explícitas algumas das suposições nas quais se baseia o modelo de comunicação. Para começar, supomos que, na camada física, na camada de enlace de dados e na camada de rede existem processos independentes que se comunicam pelo envio de mensagens. Em muitos casos, os processos da camada física e da camada de enlace de dados estarão funcionando em um processador dentro de um chip especial de E/S de rede, e o código da camada de rede estará na CPU principal. Porém, outras implementações também são possíveis (por exemplo, três processos em um único chip de E/S ou as camadas física e de enlace de dados funcionando como procedimentos chamados pelo processo da camada de rede). De qualquer forma, tratar as três camadas como processos separados torna a discussão conceitualmente mais clara e também enfatiza a independência das camadas.

Outra suposição de extrema importância é a de que a máquina A deseja enviar um longo fluxo de dados à máquina B utilizando um serviço confiável, orientado a conexões. Mais adiante, vamos considerar a situação em que B também deseja enviar os dados a A simultaneamente. Supõe-se que A tem um suprimento infinito de dados prontos para serem enviados, e nunca terá de esperar pela produção de dados. Quando a camada de dados de A solicitar dados, a camada de rede sempre será capaz de obedecer de imediato. (Mais adiante essa restrição também será superada.)

Também supomos que as máquinas não sofrerão panes. Isto é, esses protocolos lidam com erros de comunicação, mas não com os problemas causados por computadores que sofrem panes e são reinicializados.

No que se refere à camada de enlace de dados, o pacote repassado a ela pela camada de rede através da interface consiste em dados puros, em que cada bit deve ser entregue à camada de rede de destino. O fato de a camada de rede de destino poder interpretar parte do pacote como um cabeçalho não tem nenhum interesse para a camada de enlace de dados.

Quando a camada de enlace de dados aceita um pacote, ela o encapsula em um quadro, acrescentando-lhe um cabeçalho e um final de enlace de dados (veja a Figura 3.1). Portanto, um quadro consiste em um pacote incorporado, em algumas informações de controle (no cabeçalho) e em um total de verificação (no final). Em seguida, o quadro é transmitido à camada de enlace de dados da outra máquina. Presumiremos que existem procedimentos de biblioteca adequados, to_physical_layer para enviar um quadro e from_physical_layer para receber um quadro. O hardware de transmissão calcula e acrescenta o total de verificação (criando assim o final), de forma que o software da camada de enlace de dados não precise se preocupar com isso.
[image: image1.png]Magquina transmissora M4agquina receptora

Pacote Pacote
Quadro
Campo de . Campo de .
Cabegalho carga dti Final Cabecalho carga i Final

L J

Figura 3.1 Relacionamento entre pacotes e quadros

Inicialmente, o receptor nada tem a fazer. Ele fica à espera de que algo aconteça. Nos exemplos de protocolos apresentados neste trabalho, indicaremos que a camada de enlace de dados está esperando que algo aconteça por meio da chamada de procedimento wait_for_event(event). Esse procedimento só retorna quando acontece algo (por exemplo, quando chega um quadro). Ao retornar, a variável event informa o que aconteceu. O conjunto de eventos possíveis é diferente para os diversos protocolos a serem descritos e será definido separadamente para cada protocolo. Observe que, em uma situação mais realista, a camada de enlace de dados não ficará em um loop infinito à espera de um evento, como sugerimos, mas receberá uma interrupção, o que a fará interromper o que estava fazendo para manipular o quadro recebido. Apesar disso, por simplicidade, ignoraremos todos os detalhes de atividades paralelas na camada de enlace de dados, e presumiremos que ela se dedica em tempo integral apenas ao tratamento do nosso canal.

Quando um quadro chega ao receptor, o hardware calcula o total de verificação. Se o total de verificação estiver incorreto (ou seja, se houve um erro de transmissão), a camada de enlace de dados será informada (event = cksum_err). Se o quadro recebido tiver chegado sem danos, a camada de enlace de dados também será informada (event = frame_arrival), para que ela possa receber o quadro para inspeção usando from_physical_layer. Assim que recebe um quadro correto, a camada de enlace de dados verifica as informações de controle contidas no cabeçalho e, se tudo estiver correto, repassa a porção do pacote à camada de rede. Em nenhuma circunstância, um cabeçalho de quadro será entregue a uma camada de rede.

Há uma boa razão para que a camada de rede nunca receba qualquer parte do quadro: manter os protocolos de rede e de enlace de dados completamente separados. Desde que a camada de rede não saiba absolutamente nada sobre o protocolo de enlace de dados ou sobre o formato do quadro, esses itens poderão ser alterados sem exigir mudanças no software da camada de rede. A utilização de uma interface rígida entre a camada de rede e a camada de enlace de dados simplifica bastante o projeto do software, porque os protocolos de comunicação das diferentes camadas podem evoluir de forma independente.

O código 1.0 mostra algumas declarações (em linguagem C) comuns a muitos dos protocolos que serão discutidos mais adiante. Cinco estruturas de dados são definidas nesse código: boolean, seq_nr, packet, frame_kind e frame. Um boolean é um tipo enumerado e pode assumir os valores verdadeiro (true) e falso (false). Um seq_nr é um inteiro pequeno usado para numerar os quadros, o que facilita sua distinção. Esses números de seqüência variam de 0 até MAX_SEQ (inclusive), que representa um limite a ser definido, quando necessário, para cada protocolo. Um packet é a unidade de informação trocada entre a camada de rede e a camada de enlace de dados da mesma máquina ou entre pares da camada de rede. No nosso modelo, ele sempre contém MAX_PKT bytes; no entanto, de modo mais realista, ele teria comprimento variável.

Um frame é composto por quatro campos: kind, seq, ack e info; os três primeiros contêm informações de controle, e o último contém os dados reais a serem transferidos. Esses campos de controle são chamados coletivamente cabeçalho de quadro.

#define MAX_PKT 1024

/*determina tamanho máximo de pacote em bytes*/

typedef enum {false, true} boolean;
/* tipo booleano */
typedef unsigned int seq_nr;

/* números de confirmação ou seqüência */

typedef struct {unsigned char data[MAX_PKT];} packet;
 /* definição de pacote */

typedef enum {data, ack, nak} frame_kind;

/* definição de frame_kind */

typedef struct {

/* quadros são transportados nessa camada */

 frame_kind kind;

/* que tipo de quadro é este? */

 seq_nr seq;

/* número de seqüência */

 seq_nr ack;

/ número de confirmação */

 packet info;

/* o pacote da camada de rede */

} frame;

/* Espera que um evento aconteça; retorna o tipo em event. */
void wait_for_event(event_type *event);

/* Busca um pacote da camada de rede para transmissão no canal. */

void from_network_layer(packet *p);

/* Entrega informações de um quadro recebido à camada de rede. */

void to_network_layer(packet *p);

/* Extrai um quadro recebido da camada física e o copia em r. */

void from_physical_layer(frame *r);

/* Repassa o quadro à camada física para transmissão. */

void to_physical_layer(frame *s);

/* Inicializa o relógio e ativa o evento timeout. */

void start_timer(seq_nr k);

/* Interrompe o relógio e desativa o evento timeout. */

void stop_timer(seq_nr k);

/* Inicializa um timer auxiliar e ativa o evento ack_timeout. */

void start_ack_timer(void);

/*Interrompe o timer auxiliar e desativa o evento ack_timeout. */

void stop_ack_timer(void);

/* Permite que a camada de rede dê inicio a um evento network_layer_ready. */

void enable_network_layer(void);

/* Impede que a camada de rede dê início a um evento network_layer_ready. */

void disable_network_layer(void);

/* A macro Inc é expandida em linha: incrementa k de forma circular. */

#define inc(k) if (k < MAX_SEQ) k = k + 1; else k = O

Código 1.0 Algumas definições utilizadas nos protocolos apresentados a seguir. Essas definições estão armazenadas no arquivo protocol.h.
O campo kind indica se há dados no quadro, pois alguns protocolos distinguem quadros que contêm exclusivamente informações de controle daqueles que armazenam dados além dessas informações. Os campos seq e ack são usados para números de seqüência e confirmações, respectivamente. O campo info de um quadro de dados contém um único pacote; o campo info de um quadro de controle não é usado. Uma implementação mais realista utilizaria um campo info de comprimento variável; nos quadros de controle, esse campo seria completamente omitido.

E importante compreender o relacionamento entre um pacote e um quadro. A camada de rede cria um pacote tomando uma mensagem da camada de transporte e acrescentando a ela o cabeçalho da camada de rede. Esse pacote é repassado à camada de enlace de dados para inclusão no campo info de um quadro que esteja sendo enviado. Quando o quadro chega ao destino, a camada de enlace de dados extrai o pacote do quadro e envia o pacote à camada de rede. Dessa forma, a camada de rede pode atuar como se as máquinas pudessem trocar pacotes diretamente.

No Código 1.0 também estão listados diversos procedimentos. Esses procedimentos são rotinas de biblioteca cujos detalhes são dependentes da implementação. O procedimento wait_for_event permanece à espera de que algo aconteça, como mencionamos anteriormente. Os procedimentos to_network_layer e from_network_layer são usados pela camada de enlace de dados para enviar pacotes à camada de rede e aceitar pacotes da camada de rede, respectivamente. Observe que from_physical_layer e to_physical_layer repassam quadros entre a camada de enlace de dados e a camada física. Por outro lado, os procedimentos to_network_layer e from_network_layer repassam pacotes entre a camada de enlace de dados e a camada de rede. Em outras palavras, to_network_layer e from_networkjayer lidam com a interface entre as camadas 2 e 3, enquanto from_physical_layer e to_physical_layer lidam com a interface entre as camadas 1 e 2.

Na maioria dos protocolos, supomos o uso de um canal não-confiável que perde quadros inteiros ocasionalmente. Para se recuperar dessas calamidades, a camada de enlace de dados transmissora tem de inicializar um timer ou relógio interno, sempre que envia um quadro. Se nenhuma confirmação tiver sido recebida dentro de um intervalo de tempo predeterminado, o relógio chegará ao timeout e a camada de enlace de dados receberá um sinal de interrupção.

Em nossos protocolos, isso é tratado permitindo-se ao procedimento wait_for_event retornar event = timeout. Os procedimentos start_timer e stop_timer ativam e desativam o timer, respectivamente. Os timeouts só são possíveis quando o timer está funcionando. E explicitamente permitido chamar start_timer enquanto o timer está funcionando; essa chamada simplesmente reinicializa o relógio para provocar o próximo timeout, depois de decorrer um intervalo de timer (a menos que ele seja reinicializado ou desativado durante esse intervalo).

Os procedimentos start_ack_timer e stop_ack_timer controlam um timer auxiliar cuja função é gerar confirmações sob determinadas condições.

Os procedimentos enable_network_layer e disable_network_layer são usados nos protocolos mais sofisticados, para os quais não mais supomos que a camada de rede sempre terá pacotes a serem enviados. Quando a camada de enlace de dados habilita a camada de rede, esta passa a ter permissão para causar uma interrupção sempre que tiver um pacote para enviar. Isso é indicado por event = network_layer_ready. Quando uma camada de rede está inativa, ela não pode causar tais eventos. Definindo com cuidado os momentos em que ativa e desativa a camada de rede, a camada de enlace de dados pode impedir que a camada de rede acabe ficando sobrecarregada com pacotes para os quais não dispõe de espaço no buffer.

Os números de seqüência dos quadros estão sempre na faixa de 0 a MAX_SEQ (inclusive), onde MAX_SEQ tem um valor diferente para os diversos protocolos. Com freqüência, é necessário aumentar um número de seqüência em uma unidade, de forma circular (isto é, MAX_SEQ é seguido por 0). A macro inc cuida dessa incrementação. Ela é definida como uma macro porque é usada em linha no caminho crítico. Como veremos mais adiante, com freqüência o processamento de protocolos é o fator que limita o desempenho da rede; portanto, a definição de operações simples como macros não afeta a legibilidade do código, mas melhora o desempenho. Além disso, como MAX_SEQ passa a ter diferentes valores em diferentes protocolos ao ser transformado em uma macro, é possível incluir todos os protocolos no mesmo código binário sem que haja conflito. Essa possibilidade é muito útil para o simulador.

As declarações do Código 1.0 fazem parte de cada um dos protocolos apresentados a seguir. Para economizar espaço e facilitar a consulta, essas declarações foram extraídas dos protocolos e são apresentadas todas juntas, mas conceitualmente elas devem estar integradas aos protocolos. Na linguagem C, essa integração é feita inserindo-se as definições em um arquivo de cabeçalho especial, nesse caso protocol.h, e utilizando-se o recurso #include do pré-processador C, que inclui essas definições nos arquivos de protocolo.

2.1 Protocolo Simplex Sem Restrições

Como primeiro exemplo, consideraremos um protocolo muito simples. Os dados são transmitidos apenas em um sentido. As camadas de rede do transmissor e do receptor estão sempre prontas à espera de informações. O tempo de processamento pode ser ignorado. O espaço disponível em buffer é infinito. E o melhor de tudo é que o canal de comunicação entre as camadas de enlace de dados nunca é danificado nem perde quadros. Esse protocolo absolutamente imaginário, que denominaremos “utopia”, é mostrado no Código 1.1
O protocolo consiste em dois procedimentos distintos, um que envia e outro que recebe informações. O procedimento transmissor é executado na camada de enlace de dados da máquina de origem, e o receptor é executado na camada de enlace de dados da máquina de destino. Não são usados números de seqüência ou de confirmação; portanto, MAX_SEQ não é necessário. O único tipo de evento possível é frame_arrival (ou seja, a chegada de um quadro não-danificado).

O transmissor é um loop while infinito que envia os dados o mais rápido possível. O corpo do loop é formado por três ações: buscar um pacote da (sempre prestativa) camada de rede, criar um quadro utilizando a variável s e transmitir o quadro ao destino. Apenas o campo info do quadro é usado por esse protocolo, pois os outros campos se referem ao controle de fluxo e de erros e, nesse caso, não há erros nem restrições de controle de fluxo.
/ *O protocolo 1 (utopia) oferece transmissão de dados em um único sentido, do transmissor para o receptor. Pressupõe-se que o canal de comunicação é livre de erros e que o receptor é capaz de processar toda a entrada de uma forma infinitamente rápida. Conseqüentemente, o transmissor permanece em um loop enviando os dados com a maior rapidez possível. */
typedef enum {frame_arrival} event_type;

#include “protocol .h”

void sender1(void)

{

 frame s;

/* buffer para um quadro enviado*/

 packet buffer;

/* buffer para um pacote enviado*/

 while (true) {

 from_network_layer(&buffer);
 /* obtém algo para enviar */

 s.info = buffer;

/* copia em s para transmitir */

 to_physical_layer(&s);

/* envia ao destino */

 }

/*O amanhã, o amanhã, o amanhã

avança nesse passo pequeno, de dia para dia, até a última sílaba da recordação.

- Macbeth, V, v */

}

void receiver1(void)

{

 frame r;

 event_type event;
/* preenchido por intervalo de espera, mas não usado aqui */

 while (true) {

 wait_for_event(&event);

/* a única possibilidade é framearrival */

 from_physical_layer(&r);
/* obtém o quadro recebido */

 to_network_layer(&r.info);
/* repassa os dados à camada de rede */

 }

}

Figura 1.1 Um protocolo simplex sem restrições.
O receptor é igualmente simples. No início, ele espera que algo aconteça, e a única possibilidade é a chegada de um quadro não-danificado. Eventualmente, o quadro chega e o procedimento wait_for_event retorna, com event definido como frame_arrival (o que, de qualquer forma, é ignorado). A chamada a from_physical_layer remove o quadro recém-chegado do buffer de hardware e o coloca na variável r, onde o código receptor poderá buscá-lo quando necessário.

Por fim, a parte referente aos dados é repassada à camada de rede, e a camada de enlace de dados volta a esperar pelo próximo quadro, ficando efetivamente em suspenso até a chegada do quadro.

2.2 Protocolo Simplex Stop-and-wait

Agora, deixaremos de lado a restrição pouco realista utilizada no protocolo 1: a possibilidade de a camada de rede receptora processar os dados recebidos de uma forma infinitamente rápida (ou, o que é equivalente, a presença na camada de enlace de dados receptora de um espaço de buffer infinito, no qual poderão ser armazenados todos os quadros recebidos enquanto eles aguardam para serem processados). Continuamos supondo que o canal de comunicação não apresenta erros e que o tráfego de dados ainda é do tipo simplex.
O principal problema com que temos de lidar nesse caso é a forma de impedir que o transmissor inunde o receptor com dados, mais rapidamente do que este é capaz de processá-los. Em essência, se o receptor necessitar de um tempo ∆t para executar from_physical_layer e to_network_layer, o transmissor terá de enviar os dados em uma velocidade média menor que um quadro por tempo ∆t. Além disso, se considerarmos que não há nenhuma atividade automática de bufferização e enfileiramento no hardware do receptor, o transmissor nunca terá de enviar um novo quadro enquanto o mais antigo não tiver sido buscado por from_physical_layer, a menos que o novo quadro substitua o antigo.

Em determinadas circunstâncias restritas (por exemplo, transmissão síncrona e uma camada de enlace de dados receptora totalmente dedicada ao processamento da única linha de entrada), talvez seja possível para o transmissor simplesmente inserir um retardo no protocolo 1, a fim de reduzir sua velocidade e impedi-lo de sobrecarregar o receptor. No entanto, o mais comum é que cada camada de enlace de dados tenha várias linhas para processar, e que o intervalo de tempo entre a chegada de um quadro e seu processamento varie de forma considerável. Se puderem calcular o comportamento do receptor em uma situação totalmente desfavorável, os projetistas da rede serão capazes de programar o transmissor para funcionar tão lentamente que, mesmo quando todos os quadros sofrerem um retardo máximo, não haverá sobrecargas. O problema com essa estratégia é que ela é muito conservadora e nos leva a uma utilização da largura de banda muito abaixo do valor considerado ótimo, a menos que o comportamento do transmissor no melhor e no pior caso seja quase o mesmo (isto é, que a variação no tempo de reação da camada de enlace de dados seja muito pequena).

Uma solução mais geral para esse dilema é fazer o receptor enviar um feedback ao transmissor. Depois de enviar um pacote à sua camada de rede, o receptor envia um pequeno quadro fictício (dummy) de volta ao transmissor, permitindo a transmissão do próximo quadro. Após o envio de um quadro, o protocolo exige que o transmissor espere sua vez, até a chegada do pequeno quadro fictício (isto é, da confirmação). A utilização de feedback do receptor para informar ao transmissor quando ele pode enviar mais dados é um exemplo do controle de fluxo mencionado anteriormente.

Os protocolos nos quais o transmissor envia um quadro e em seguida espera por uma confirmação antes de continuar sua operação são chamados stop-and-wait. O Código 1.2 mostra um exemplo de protocolo simplex stop-and-wait.

/* O protocolo 2 (stop-and-wait) também implementa um fluxo de dados unidirecional entre o transmissor e o receptor. Presume-se mais uma vez que o canal de comunicação seja totalmente livre de erros, como no protocolo 1. No entanto, dessa vez, o receptor tem buffer finito e uma velocidade de processamento finita; portanto, o protocolo deverá impedir explicitamente que o transmissor sobrecarregue o receptor enviando dados mais rapidamente do que ele é capaz de processar. */

typedef enum {frame_arrival} event_type;

#include “protocol .h”
void sender2(void)

{

 frame s;

/* buffer para um quadro enviado */

 packet buffer;

/* buffer para um pacote enviado */

 event_type event;

/* frame_arrival é a única possibilidade */

 whille (true) {

 from_network_layer(&buffer);
/* obtém algo para enviar /

 s.info = buffer;

/* copia em s para transmissão /

 to_physical_layer(&s);

/* adeus, quadrinho /

 wait_for_event(&event);
/* não prossegue enquanto não recebe permissão para ir em frente */

 }

}

void receiver2(void)

{

 frame r, s;
/* buffers para quadros */

 event_type event;
/* frame_arrival é a única possibilidade */

 while (true) {

 wait_for_event(&event);
/* a única possibilidade é frame_arrival /

 from_physlcal_layer(&r);
/* obtém o quadro recebido */

 to_network_layer(&r.info);
/* repassa os dados à camada de rede */

 to_physical_layer(&s);
/* envia um quadro fictício para despertar o transmissor */

 }

}

Código 1.2 Um protocolo simplex stop-and-wait.
Apesar de o tráfego de dados nesse exemplo ser simples, indo apenas do transmissor ao receptor, há quadros sendo enviados em ambas as direções. Conseqüentemente, o canal de comunicação entre as duas camadas de enlace de dados deve ser capaz de realizar a transferência bidirecional de informações. No entanto, esse protocolo acarreta uma rígida alternância de fluxo: primeiro o transmissor envia um quadro, depois o receptor envia outro; em seguida, o transmissor envia mais um quadro e assim por diante. Um canal físico half-duplex seria suficiente nesse caso.

A exemplo do protocolo 1, o transmissor começa extraindo um pacote da camada de rede, utilizando-o para criar um quadro que em seguida é transmitido ao destino. Porém, agora, ao contrário do que ocorre no protocolo 1, o transmissor deve aguardar a chegada de um quadro de confirmação antes de tornar a entrar em loop e buscar o próximo pacote da camada de rede. A camada de enlace de dados do transmissor não precisa sequer inspecionar o quadro recebido, pois só há uma possibilidade: o quadro recebido é sempre uma confirmação.

A única diferença entre receptor1 e receptor2 é que, após entregar um pacote à camada de rede, o receptor2 envia um quadro de confirmação de volta ao transmissor, antes de entrar mais uma vez no loop de espera. Como apenas a chegada do quadro de volta ao transmissor é importante, e não seu conteúdo, o receptor não precisa incluir qualquer informação específica no quadro.

2.3 Protocolo Simplex Para Um Canal Com Ruído

Agora, vamos considerar a situação normal de um canal de comunicação no qual ocorrem erros. Os quadros podem ser danificados ou completamente perdidos. No entanto, supomos que, se um quadro for danificado em trânsito, o hardware receptor detectará essa ocorrência ao calcular o total de verificação. Se o quadro for danificado de tal forma que o total de verificação nunca esteja correto, uma possibilidade muito improvável, o protocolo em questão (e todos os outros protocolos) poderá apresentar falhas (isto é, poderá entregar um pacote incorreto à camada de rede).

À primeira vista, pode parecer que uma variação do protocolo 2 seria viável: a inclusão de um timer. O transmissor poderia enviar um quadro, mas o receptor só enviaria um quadro de confirmação se os dados fossem recebidos corretamente. Se um quadro danificado chegasse ao receptor, ele seria descartado. Após um certo tempo, o transmissor alcançaria seu timeout e enviaria o quadro mais uma vez. Esse processo seria repetido até que o quadro finalmente chegasse intacto.

Esse esquema tem uma falha fatal. Pense no problema e tente descobrir o que poderia estar errado antes de continuar a leitura.

Para verificar o que poderia estar errado, lembre-se de que a função dos processos da camada de enlace de dados é oferecer comunicações transparentes e livres de erros entre os processos da camada de rede. A camada de rede da máquina A envia uma série de pacotes à camada de enlace de dados da mesma máquina. Esta, por sua vez, deve se certificar de que a camada de enlace de dados da máquina B enviará uma série idêntica de pacotes à camada de rede da mesma máquina. Em particular, a camada de rede da máquina B não tem como saber se um pacote foi perdido ou duplicado; portanto, a camada de enlace de dados deve garantir que nenhuma combinação de erros de transmissão, mesmo improvável, possa fazer com que um pacote duplicado seja entregue a uma camada de rede.

Considere a seguinte situação:

1. A camada de rede de A envia o pacote 1 à sua camada de enlace de dados. O pacote é corretamente recebido em B e repassado à camada de rede de B. B envia um quadro de confirmação de volta a A.

2. O quadro de confirmação se perde por completo. Ele simplesmente nunca chega ao destino. Tudo seria muito mais simples se o canal tivesse adulterado e perdido apenas quadros de dados, e não quadros de controle. No entanto, para nossa tristeza, o canal não faz distinção entre quadros.

3. Eventualmente, a camada de enlace de dados de A tem seu limite de tempo esgotado. Como não recebeu uma confirmação, ela presume (incorretamente) que seu quadro de dados se perdeu ou foi danificado e envia mais uma vez o quadro contendo o pacote 1.

4. O quadro duplicado também chega perfeitamente à camada de enlace de dados de B e é repassado de imediato, sem maiores problemas, à camada de rede. Caso A esteja enviando um arquivo a B, uma parte do arquivo será duplicada (isto é, a cópia do arquivo criado por B estará incorreta e o erro não será detectado). Em outras palavras, o protocolo falhará.

Na verdade, precisamos dar ao receptor alguma forma de poder distinguir entre um quadro que ele está recebendo pela primeira vez e uma retransmissão. A maneira mais fácil de conseguir isso é fazer o transmissor incluir um número de seqüência no cabeçalho de cada quadro enviado. Dessa forma, o receptor poderá verificar o número de seqüência de cada quadro recebido para confirmar se esse é um novo quadro ou se é uma duplicata a ser descartada.

Como aconselhamos a utilização de cabeçalhos não muito longos nos quadros, surge a seguinte pergunta: qual é a quantidade mínima de bits necessários para o número de seqüência? A única ambigüidade nesse protocolo ocorre entre um quadro m e seu sucessor direto, m + 1. Se o quadro m tiver sido perdido ou danificado, o receptor não o confirmará; portanto, o transmissor continuará tentando enviá-lo. Uma vez que o quadro tenha sido corretamente recebido, o receptor enviará uma confirmação de volta ao transmissor. E aqui que surge o problema potencial. Dependendo do fato de o quadro de confirmação voltar ao transmissor corretamente ou não, o transmissor poderá tentar enviar m ou m + 1.

O evento que aciona o envio de m + 2 por parte do transmissor é a chegada de uma confirmação referente ao quadro m + 1. Porém, isso implica que m foi corretamente recebido pelo receptor e o mesmo aconteceu com sua confirmação em relação ao transmissor (caso contrário, o transmissor não teria começado a enviar m + 1 e muito menos m + 2). Conseqüentemente, nesse caso há uma única ambigüidade, presente entre um quadro e seu predecessor ou sucessor imediato, e não entre o predecessor e o sucessor propriamente ditos.

Um número de seqüência de 1 bit (0 ou 1) é, portanto, suficiente. A cada instante, o receptor espera o próximo número de seqüência. Qualquer quadro recebido que contenha o número de seqüência errado será rejeitado por ser considerado uma cópia. Quando um quadro contendo um número de seqüência correto chega, ele é aceito e repassado à camada de rede. Em seguida, o número de seqüência esperado é incrementado na base 2 (ou seja, 0 passa a ser 1 e 1 passa a ser O).

Um exemplo desse tipo de protocolo é mostrado no Código 1.3. Os protocolos nos quais o transmissor espera por uma confirmação positiva antes de passar para o próximo item de dados freqüentemente são chamados PAR (Positive Acknowledgement with Retransmission — confirmação positiva com retransmissão) ou ARQ (Automatic Repeat reQuest — solicitação de repetição automática). A exemplo do protocolo 2, esse protocolo também transmite dados em apenas um sentido.

O protocolo 3 difere de seus predecessores pelo fato de tanto o transmissor quanto o receptor terem uma variável cujo valor é memorizado enquanto a camada de enlace de dados se encontra em estado de espera. Em next_frame_to_send, o transmissor armazena o número de seqüência do próximo quadro a ser enviado, e em frame_expected o receptor armazena o número de seqüência do próximo quadro esperado. Cada protocolo tem uma breve fase de inicialização antes de entrar no loop infinito.

Após enviar um quadro, o transmissor ativa o timer. Caso já esteja ativado, o timer será reinicializado para permitir a contagem de outro intervalo. O intervalo deve ser definido de forma que haja tempo suficiente para o quadro chegar ao receptor e ser processado e para o quadro de confirmação ser enviado de volta ao transmissor. Somente quando o intervalo de tempo tiver se esgotado, poderemos supor com segurança que o quadro transmitido ou sua confirmação se perdeu, e que será necessário enviar uma cópia. Se o intervalo de timeout for definido com um valor curto demais, o transmissor irá enviar quadros desnecessários. Embora não afetem a correção do protocolo, esses quadros extras prejudicarão o desempenho.

Depois de transmitir um quadro e ativar o timer, o transmissor espera que algo interessante aconteça. Existem apenas três possibilidades: o quadro de confirmação chegar sem danos, o quadro de confirmação chegar com erro ou o timer ser desativado. Se uma confirmação válida for recebida, o transmissor buscará o próximo pacote em sua camada de rede e o colocará no buffer, substituindo o pacote anterior. Ele também aumentará o número de seqüência. Se for recebido um quadro com erro ou se não chegar nenhum quadro ao destino, o buffer e o número de seqüência permanecerão inalterados; nesse caso, uma cópia do quadro poderá ser enviada.

Quando um quadro válido chega ao receptor, seu número de seqüência é conferido, para verificar se ele é uma cópia. Se não for uma cópia, o quadro será aceito, enviado à camada de rede, e uma confirmação será gerada. Cópias e quadros danificados não serão repassados à camada de rede.
/* O protocolo 3 (par) permite um fluxo de dados unidirecional por um canal não-confiável. */

#define MAX_SEQ 1

/* deve ser 1 para o protocolo 3 */

typedef enum (frame_arrival, cksum_err, timeout} event_type;

 #include “protocol .h”

void sender3(void)

{

 seq_nr next_frame_to_send;
/* número de seqüência do */

/* próximo quadro a ser enviado */

 frame s;

/* variável de rascunho */

 packet buffer;

/* buffer para um pacote enviado */

 event_type event;

 next_frame_to_send = 0;

/* inicializa os números de seqüência */

/* dos quadros a serem enviados */

 from_network_layer(&buffer);
/* busca primeiro pacote */

 while (true) {

 s.info = buffer;

/* constrói um quadro para transmissão */

 s.seq next_frame_to_send;
/* insere número de seqüência em quadro */

 to_physícal_layer(&s);

/*envia quadro ao destino */

 start_timer(s.seq);

/* se a resposta demorar demais, ativa timeout */

 wait_for_event(&event);

/* frame_arrival, cksum_err, timeout */

 if (event = = frame_arrival) {

 from_physical_layer(&s);
/* recebe a confirmação */

 if (s.ack = = next_frame_to_send) {

 stop_timer(s.ack);

/* desativa o timer */

 from_network_layer(&buffer);
/* obtêm o próximo quadro a enviar */

 inc(next_frame_to_send);

/* inverte next_frame_to_send */

 }

 }

 }

}

void receiver3(void)

{

 seq_nr frame_expected;

 frame r, s;

 event_type event;

 frame_expected = 0;

 while (true) {

 wait_for_event(&event);

/*possibilidades: frame_arrival, cksum_err */
 if (event = frame_arrival) {
/*chegou um quadro válido. */
 from_physical_layer(&r);
/*recebe o quadro recém-chegado */
 if (r.seq = = frame_expected) { /*esse é o quadro que estávamos esperando. */
 to_network_layer(&r.info) ;
/*repassa os dados à camada de rede */
 inc(frame_expected);
/*na próxima vez, espera o outro número de seqüência */
 }

 s.ack = 1 - frame_expected;
/* informa qual quadro está sendo confirmado */

 to_physical_layer(&s);
/* envia confirmação */

 }

 }

}

Código 1.3 Uma confirmação positiva com protocolo de retransmissão.
3 PROTOCOLOS DE JANELA DESLIZANTE

Nos protocolos apresentados anteriormente, os quadros de dados eram transmitidos em apenas um sentido. Em situações mais práticas, há necessidade de transmitir dados em ambos os sentidos. Você pode obter uma transmissão de dados full-duplex definindo dois canais de comunicação distintos e usar cada um deles para um tráfego de dados simplex (em diferentes sentidos). Se isso for feito, haverá dois circuitos físicos separados, cada um com um canal “direto” (para dados) e um canal “inverso” (para confirmações). Em ambos os casos, a largura de banda do canal inverso é quase totalmente perdida. Na verdade, o usuário está pagando por dois circuitos, mas está usando apenas a capacidade de um deles.

Uma idéia melhor é usar o mesmo circuito para dados em ambos os sentidos. Afinal de contas, nos protocolos 2 e 3 ele já estava sendo usado para transmitir quadros em ambos os sentidos, e o canal inverso tem a mesma capacidade do canal direto. Nesse modelo, os quadros de dados enviados de A para B são mistura dos com os quadros de confirmação enviados de A para B. Ao verificar o campo kind do cabeçalho de um quadro recebido, o receptor pode identificar se o quadro é de dados ou de confirmação.

Apesar de o entrelaçamento de quadros de dados e de controle no mesmo circuito representar um avanço em relação ao uso de dois circuitos físicos separados, ainda é possível introduzir mais um aperfeiçoamento. Quando um quadro de dados chega a seu destino, em vez de enviar imediatamente um quadro de controle separado, o receptor se contém e espera até a camada de rede enviar o próximo quadro. A confirmação é acrescentada ao quadro de dados que está sendo enviado (por meio do campo ack do cabeçalho de quadro). Na verdade, a confirmação pega carona no próximo quadro de dados que estiver sendo enviado. A técnica de retardar temporariamente as confirmações e enviá-las junto com o próximo quadro de dados é conhecida pelo nome de piggybacking (superposição).

A principal vantagem do piggybacking em relação ao envio de quadros de confirmação distintos é a melhor utilização da largura de banda disponível para o canal. O campo ack do cabeçalho de quadro precisa de apenas alguns bits, enquanto um quadro separado precisaria de um cabeçalho, da confirmação e de um total de verificação. Além disso, um número menor de quadros enviados significa menor quantidade de interrupções de “chegada de quadro”, e talvez menor quantidade de buffers no receptor, dependendo da forma como o software do receptor está organizado. No próximo protocolo a ser examinado, o campo de piggyback necessita apenas de um bit no cabeçalho de quadro. Em geral, ele raramente precisa de mais que alguns bits no cabeçalho.

No entanto, o piggybacking introduz uma complicação não-presente em confirmações separadas. Quanto tempo à camada de enlace de dados deve esperar por um pacote ao qual deverá acrescentar a confirmação? Se a camada de enlace de dados esperar durante um intervalo de tempo maior que o permitido pelo timeout do transmissor, o quadro será retransmitido, o que invalidará todo o processo de confirmação. Se a camada de enlace de dados fosse um oráculo e pudesse prever o futuro, ela saberia quando o próximo pacote da camada de rede estivesse chegando e poderia decidir entre esperar por ele ou enviar imediatamente uma confirmação separada, dependendo da duração prevista do tempo de espera. E óbvio que a camada de enlace de dados não é capaz de prever o futuro; portanto, ela deve recorrer a algum esquema ad hoc, como esperar durante um número fixo de milissegundos. Se um novo pacote chegar logo, a confirmação será acrescentada a ele; caso contrário, se nenhum pacote tiver chegado até o final desse intervalo de tempo, a camada de enlace de dados simplesmente enviará um quadro de confirmação separado.

Os três protocolos seguintes são protocolos bidirecionais que pertencem a uma classe de protocolos identificados como protocolos de janela deslizante. Os três apresentam diferenças em termos de eficiência, complexidade e requisitos de buffer, como discutiremos mais adiante. Nesses protocolos, como em todos os protocolos de janela deslizante, cada quadro enviado contém um número de seqüência, variando desde 0 até algum valor máximo. Em geral, o valor máximo e 2n - 1, de forma que o número de seqüência caiba exatamente em um campo de n bits. O protocolo de janela deslizante stop-and-wait utiliza n = 1, restringindo os números de seqüência a 0 e 1; no entanto, versões mais sofisticadas podem usar um valor arbitrário de n.

A essência de todos os protocolos de janela deslizante é o fato de que, em qualquer instante, o transmissor mantém um conjunto de números de seqüência correspondentes a quadros que ele pode enviar. Dizemos que esses quadros estão reunidos na janela de transmissão. Da mesma forma, o receptor mantém uma janela de recepção correspondente ao conjunto de quadros que está apto a aceitar. A janela do transmissor e a janela do receptor não precisam ter os mesmos limites superior e inferior ou o mesmo tamanho. Em alguns protocolos, essas janelas têm tamanho fixo, mas em outros elas podem aumentar e diminuir à medida que os quadros são enviados e recebidos.

Apesar desses protocolos permitirem que a camada de enlace de dados tenha mais liberdade em relação à ordem em que poderá enviar e receber quadros, definitivamente não descartamos o requisito de que o protocolo deve entregar os pacotes à camada de rede na mesma ordem em que eles foram repassados à camada de enlace de dados da máquina transmissora. Outra exigência que não mudou é que o canal de comunicação física entregue todos os quadros na ordem em que eles são enviados.

Os números de seqüência contidos na janela do transmissor representam quadros que foram enviados ou que podem ser enviados, mas ainda não-confirmados. Sempre que chega um novo pacote da camada de rede, ele recebe o próximo número de seqüência mais alto, e a borda superior da janela é incrementada em uma unidade. Quando uma confirmação é recebida, a borda inferior é incrementada em uma unidade. Dessa forma, a janela mantém continuamente uma lista de quadros não-confirmados. A Figura 3.13 mostra um exemplo.

Tendo em vista que os quadros atualmente presentes na janela do transmissor podem ser perdidos ou danificados em trânsito, o transmissor deve manter todos esses quadros em sua memória para que a retransmissão seja possível. Assim, se o tamanho máximo da janela for n, o transmissor precisará de n buffers para armazenar os quadros não-confirmados. Se a janela chegar a seu tamanho máximo, a camada de enlace de dados do transmissor será obrigada a desativar a camada de rede até que outro buffer esteja livre.

[image: image2.png]Transmissor 7 0

6 1
5 2
4 3
Receptor

@ : (b) () (d)

Figura 3.13 Uma janela deslizante de tamanho 1, com um nimero de seqliéncia de 3 bits.
(a) Inicialmente. (b) Depois que o primeiro quadro é enviado. (c) Depois que o primeiro
quadro é recebido. (d) Depois que a primeira confirmagéo é recebida

O tamanho da janela da camada de enlace de dados receptora corresponde aos quadros que ela é capaz de aceitar. Qualquer quadro que ficar fora da janela será simplesmente descartado. Quando for recebido um quadro cujo número de seqüência é igual à borda inferior da janela, ele será repassado à camada de rede, será gerada uma confirmação, e a janela será incrementada em uma unidade. Ao contrário da janela do transmissor, a janela do receptor sempre permanece com seu tamanho inicial. Observe que um tamanho de janela igual a 1 significa que a camada de enlace de dados só aceita quadros em ordem, mas para janelas maiores isso não é verdade. Em contraste, a camada de rede sempre recebe dados na ordem adequada, independente do tamanho da janela da camada de enlace de dados.

A Figura 3.13 mostra um exemplo com um tamanho máximo de janela igual a 1. Inicialmente, não há quadros pendentes; portanto, as bordas inferior e superior da janela do transmissor são iguais mas, à medida que o tempo passa, a situação se desenvolve da maneira mostrada.

3.1 Um protocolo de janela deslizante de um bit

Antes de abordarmos o caso geral, vamos examinar primeiro um protocolo de janela deslizante com um tamanho máximo de janela igual a 1. Esse tipo de protocolo utiliza o stop-and-wait, pois o transmissor envia um quadro e aguarda sua confirmação antes de enviar o quadro seguinte.

O Código 1.4 representa esse tipo de protocolo. Assim como os demais, esse protocolo começa definindo algumas variáveis. Next_frame_to_send informa qual quadro o transmissor está tentando enviar. De modo semelhante, frame_expected informa que quadro o receptor está esperando. Nos dois casos, 0 e 1 são as únicas possibilidades.
/* O protocolo 4 (de janela deslizante) é bidirecional. */

#define MAXSEQ

/* deve ser 1 para o protocolo 4 /1

typedef enum {frame_arrival, cksum_err, timeout} event_type;

#include “protocol .h”

void protocol4 (void)

{

 seq_nr next_frame_to_send;

/* 0 ou 1 somente */

 seq_nr frame_expected;

/* 0 ou 1 somente */

 frame r, s;

/* variáveis de rascunho */

 packet buffer;

/* pacote que está sendo enviado no momento */

 event_type event;

 next_frame_to_send = 0;

/* próximo quadro no fluxo de saída */

 frame_expected = 0;

/* quadro esperado em seguida */

 from_network_layer(&buffer);

/ * busca um pacote na camada de rede*/

 s.info = buffer;

/* prepara-se para enviar o quadro inicial*/

 s.seq = next_frame_to_send;

/* insere número de seqüência no quadro */

 s.ack = 1 – frame_expected;

/* confirmação com piggyback */

 to_physical_layer(&s);

/* transmite o quadro */

 start_timer(s.seq) ;

/* inicializa o timer atual */

 while (true) {

 wait_for_event(&event);

/* trame arrival, cksum_err ou timeout */

 if (event == frame_arrival) {

/* um quadro chegou sem danos. */

 from_physical_layer(&r);

/* vai buscá-lo */

 if (r.seq == frame_expected)

/* trata o fluxo de quadros recebidos. */

 to_network_layer(&r.info);

/* repassa pacote à camada de rede */

 inc(frame_expected);

/* inverte próximo número de seqüência esperado */

 }

 if (r.ack == next_frame_to_send) {
/* trata o fluxo de quadros enviados. */
 stop_timer(r.ack);

/* desativa o timer */

 from_network_layer(&buffer);
/* busca novo pacote na camada de rede */
 inc(next_frame_to_send);

/* inverte número de seqüência do transmissor */

 }

 }

 s.info = buffer;

/* constrói quadro a ser enviado */

 s.seq = next_frame_to_send;

/* insere número de seqüência no quadro */

 s.ack = 1 – frame_expected;

/* número de seqüência do último quadro recebido */

 to_physical_layer(&s);

/* transmite um quadro */

 start_timer(s.seq) ;

/* inicializa o timer atual */

 }

}

Figura 1.4 Um protocolo de janela deslizante de um bit.
Normalmente, uma das duas camadas de enlace de dados parte primeiro e transmite o primeiro quadro. Em outras palavras, apenas um dos programas da camada de enlace de dados deve conter as chamadas de procedimento to_physical_layer e start_timer fora do loop principal. No caso de as duas camadas de enlace de dados partirem simultaneamente, surgirá uma situação peculiar, que será discutida mais adiante. A máquina que inicia busca o primeiro pacote em sua camada de rede, constrói um quadro a partir dele e o envia. Quando este (ou qual quer) quadro chega ao destino, a camada de enlace de dados receptora verifica se ele é uma cópia, como ocorreu no protocolo 3. Se o quadro for o esperado, ele será repassado à camada de rede e a janela do receptor será deslocada para cima.

O campo de confirmação contém o número do último quadro recebido sem erro. Se esse número estiver de acordo com o número de seqüência do quadro que o transmissor está tentando enviar, o transmissor saberá que já cuidou do quadro armazenado em buffer e poderá buscar o pacote seguinte em sua camada de rede. Se o número de seqüência for discordante, o transmissor deve continuar tentando enviar o mesmo quadro. Sempre que um quadro é recebido, um outro quadro também é enviado de volta.

Agora, vamos examinar o protocolo 4 para ver o quanto ele é flexível em relação a situações patológicas. Suponha que o computador A esteja tentando enviar seu quadro 0 ao computador B e que B esteja tentando enviar seu quadro 0 ao computador A. Imagine que A envia um quadro a B, mas o intervalo de timeout de A é curto demais. Conseqüentemente, A pode completar o timeout repetidas vezes, enviando uma série de quadros idênticos, todos com seq = 0 e ack = 1.

Quando o primeiro quadro válido chegar a B, ele será aceito, e frame_expected será definido como 1. Todos os quadros subseqüentes serão rejeitados, porque B agora está esperando quadros com número de seqüência 1, e não 0. Além disso, como todas as cópias têm ack = 1 e B ainda está aguardando uma confirmação de 0, B não buscará um novo pacote em sua camada de rede.

Após a chegada de todas as cópias rejeitadas, B enviará um quadro para A contendo seq = 0 e ack = 0. Eventualmente, um desses quadros chegará sem erros à máquina A, fazendo com que A comece a enviar o próximo pacote. Nenhuma combinação de quadros perdidos ou timeouts prematuros pode fazer o protocolo entregar pacotes duplicados à camada de rede, ignorar um pacote ou chegar a um impasse.

Entretanto, surgirá uma situação peculiar se os dois lados enviarem simultaneamente um pacote inicial. Essa dificuldade de sincronização está ilustrada na Figura 3.15. Na parte (a), é exibida a operação normal do protocolo. Na parte (b), observamos a peculiaridade. Se B esperar pelo primeiro quadro de A antes de enviar um de seus quadros, a seqüência será a da parte (a), e todos os quadros serão aceitos. Porém, se A e B iniciarem a comunicação ao mesmo tempo, seus primeiros quadros se cruzarão e as camadas de enlace de dados recairão na situação (b). Em (a), cada quadro recebido traz um novo pacote para a camada de rede; não há cópias. Em (b), metade dos quadros contém cópias, embora não haja erros de transmissão. Situações similares podem ocorrer como resultado de timeouts prematuros, mesmo quando está claro que um lado começa primeiro. Na verdade, se ocorrerem vários timeouts prematuros, os quadros poderão ser enviados três vezes ou mais.

[image: image3.png]Aenvia (0, 1, A0
(— B recebe (0, 1, AO)*

/ B envia (0, 0, BO)
A recebe (0, 0, BO)*

Aenvia(1,0,A1) —_ B recebe (1, 0, A1)*

Benvia (1, 1, B1
Arecebe (1,1, BI)=—" ()

Aenvia (0,1, A2) ~——u B recebe (0, 1, A2)”

B envia (0, 0, B2
A recebe (0, 0, B2)* """ fa ()

Aenvia(1,0.A3) ~——_ B recebe (1, 0, A3)"
Benvia (1, 1, B3)

A envia (0, 1, AO) B envia (0, 1, BO)
B recebe (0, 1, A0)*

B envia (0, 0, BO)

A recebe (0, 1, BO)*

Aenvia (0, 0, A0) B recebe (0, 0, AD)

B envia (1, 0, B1)
A recebe (Q, q, BO)

Aenvia (1,0, A1) B recebe (1, 0, A1)*

B envia (1, 1, B1)
A recebe (1, 0, B1)*
A envia (1, 1, Al
(I Brecebe (1,1, A1)
B envia (0, 1, B2)

Tempo

@

(b)

Figura 3.15 Dois cenarios referentes ao protocolo 4. (a) Caso normal.
{b) Caso anormal. A notagado é (seqiiéncia, confirmagéo, nimero do pacote).
Um asterisco indica onde uma camada de rede aceita um pacote

3.2 Um protocolo que utiliza go back n

Até agora estávamos supondo implicitamente que o tempo de transmissão necessário para a chegada de um quadro até o receptor somado ao tempo de transmissão para o retorno da confirmação era insignificante. Às vezes, essa suposição é nitidamente falsa. Nessas situações, o longo tempo de viagem de ida e volta pode ter implicações importantes para a eficiência da utilização da largura de banda. Como exemplo, considere um canal de satélite de 50 kbps com um retardo de propagação de ida e volta de 500 ms. Vamos imaginar a tentativa de usar o protocolo 4 para enviar quadros de 1.000 bits pelo satélite. Em t = 0, o transmissor começa a enviar o primeiro quadro. Em t = 20 ms, o quadro já foi completamente enviado. Até t = 270 ms, o quadro ainda não chegou completamente ao receptor, e até t = 520 ms, na melhor das hipóteses, a confirmação ainda não voltou ao transmissor (sem nenhum tempo de espera no receptor e com um quadro de confirmação curto). Isso significa que o transmissor esteve bloqueado durante 500/520 ou 96% do tempo (isto é, apenas 4% da largura de banda disponível foram utilizados). E claro que a combinação de um longo tempo de trânsito, alta largura de banda e pequeno comprimento de quadro é desastrosa em termos de eficiência.

O problema descrito anteriormente pode ser visto como uma conseqüência da regra que exige que um transmissor espere por uma confirmação antes de enviar outro quadro. Se essa restrição não for rigorosa, poderemos obter uma eficiência muito melhor. Basicamente, a solução está em permitir que o transmissor envie até w quadros antes do bloqueio, e não apenas 1. Com uma escolha apropriada de w, o transmissor será capaz de transmitir quadros continuamente durante um tempo igual ao tempo de trânsito da viagem de ida e volta, sem ocupar a janela toda. No exemplo anterior, w deve ser pelo menos igual a 26. O transmissor começa enviando o quadro 0 como antes. Decorrido o tempo para o término do envio de 26 quadros, em t = 520, a confirmação do quadro 0 terá acabado de chegar. Daí em diante, as confirmações chegarão a cada 20 ms, e assim o transmissor sempre terá permissão para continuar exatamente quando precisar dela. A todo o momento ficam pendentes 25 ou 26 quadros não-confirmados. Em outras palavras, o tamanho máximo da janela do transmissor é 26.

A necessidade de uma janela grande do lado transmissor surge sempre que o produto da largura de banda pelo retardo de ida e volta é grande. Se a largura de banda for alta, mesmo para um retardo moderado, o transmissor esgotará sua janela rapidamente, a menos que ele tenha uma janela grande. Se o retardo for alto (por exemplo, em um canal de satélite geoestacionário), o transmissor irá esgotar sua janela até mesmo no caso de uma largura de banda moderada. O produto desses dois fatores informa basicamente qual é a capacidade do canal, e o transmissor precisa ser capaz de preenchê-lo sem interrupções, a fim de operar com eficiência máxima.

Essa técnica é conhecida como pipelining. Se a capacidade do canal for b bits/s, se o tamanho do quadro for 1 bits e o tempo de propagação da viagem de ida e volta for R segundos, o tempo necessário para a transmissão de um único quadro será l/b segundos. Depois que o último bit de um quadro de dados tiver sido enviado, haverá um retardo R/2 antes desse bit chegar ao receptor, e outro retardo de pelo menos R/2 até o recebimento da confirmação, totalizando um retardo igual a R. No algoritmo de protocolo stop-and-wait, a linha está ocupada durante o tempo l/b e ociosa durante o tempo R, o que resulta em: utilização da linha = 1/(1 + bR).

Se l < bR a eficiência será inferior a 50%. Tendo em vista que sempre existe um retardo diferente de zero para a propagação de retorno da confirmação, em princípio o pipelining pode ser usado para manter a linha ocupada durante esse intervalo. No entanto, se o intervalo for pequeno, a complexidade adicional não valerá a pena.

O pipelining de quadros em um canal de comunicação não-confiável faz surgir algumas questões muito sérias. Primeiro, o que acontecerá se um quadro em meio a um longo fluxo for danificado ou perdido? Um grande número de quadros sucessivos chegará ao receptor antes mesmo que o transmissor descubra que algo está errado. Quando um quadro danificado chega ao receptor, ele deve sem dúvida ser descartado. No entanto, o que o receptor deve fazer com todos os quadros corretos que o seguem? Lembre-se de que a camada de enlace de dados receptora é obrigada a entregar pacotes à camada de rede em seqüência. Na Figura 3.6, observamos os efeitos do pipelining sobre a recuperação de erros. Agora, vamos examiná-lo em detalhes.

[image: image4.png]‘<— Intervalo de timeout ——

K

—

Erro Quadros descartados pela camada de enlace de dados

Tempo ———

(@)

\—v—_l
Erro Quadros inseridos no buffer pela camada de enlace de dados

(b)

Figura 3.16 Pipelining e recuperacéao de erros. Efeito de um erro (a) quando o tamanho da
janela receptora é igual a 1 e (b) quando o tamanho da janela receptora é grande

Há duas estratégias básicas para lidar com erros na presença do pipelining. De acordo com uma delas, denominada go back n, o receptor simplesmente descarta todos os quadros subseqüentes e não envia qualquer confirmação desses quadros descartados. Essa estratégia corresponde a uma janela de recepção de tamanho 1. Em outras palavras, a camada de enlace de dados se recusa a aceitar qualquer quadro, exceto o próximo quadro que ela tem de entregar à camada de rede. Se a janela do transmissor for totalmente preenchida antes de o timer encerrar a contagem, o pipeline começará a se esvaziar. Conseqüentemente, o transmissor interromperá a transmissão e retransmitirá todos os quadros não-confirmados em ordem, começando pelo quadro danificado ou perdido. Essa abordagem poderá desperdiçar uma grande quantidade de largura de banda, se a taxa de erros for alta.

Na Figura 3.16(a), vemos go back n para o caso em que a janela do receptor é grande. Os quadros 0 e 1 são corretamente recebidos e confirmados. Porém, o quadro 2 está danificado ou perdido. O transmissor, desavisado desse problema, continua a enviar quadros até expirar o timer correspondente ao quadro 2. Em seguida, ele volta até o quadro 2 e começa tudo de novo a partir dele, enviando mais uma vez os quadros 2, 3, 4 etc.

A outra estratégia geral para tratamento de erros quando é feito o pipelining de quadros denomina-se retransmissão seletiva (selective repeat). Quando ela é utilizada, um quadro incorreto recebido é descartado, mas os quadros sem defeitos recebidos depois dele são inseridos no buffer. Quando o transmissor chega ao timeout, apenas o quadro não-confirmado mais antigo é retransmitido. Se esse quadro chegar corretamente, o receptor poderá entregar à camada de rede, em seqüência, todos os quadros que armazenou no buffer. Com freqüência, a retransmissão seletiva é combinada com a ação de fazer o receptor enviar uma confirmação negativa (NAK — negative acknowledgement) ao detectar um erro — por exemplo, quando receber um erro de total de verificação ou um quadro fora de seqüência. As NAKs estimulam a retransmissão antes de expirar o timer correspondente e, desse modo, melhoram o desempenho.

Na Figura 3.16(b), os quadros 0 e 1 são novamente recebidos e confirmados corretamente, e o quadro 2 é perdido. Quando o quadro 3 chega ao receptor, a camada de enlace de dados do receptor percebe que perdeu um quadro, e assim envia de volta uma NAK correspondente ao quadro 2, mas armazena no buffer o quadro 3. Quando os quadros 4 e 5 chegam, eles também são inseridos no buffer pela camada de enlace de dados, em vez de serem repassados à camada de rede. Eventualmente, a NAK do quadro 2 volta ao transmissor, que retransmite de imediato o quadro 2. Quando esse quadro chega, a camada de enlace de dados fica com os quadros 2, 3,4 e 5, e pode repassar todos eles à camada de rede na ordem correta. Ela também pode confirmar todos os quadros até o quadro 5, inclusive, como mostra a figura. Se a NAK se perder, o transmissor chegará ao timeout correspondente ao quadro 2 e o enviará (e apenas esse quadro) por sua própria iniciativa, mas isso pode acontecer um pouco mais tarde. Na realidade, a NAK acelera a retransmissão de um quadro específico.

A estratégia de retransmissão seletiva corresponde a uma janela receptora maior que 1. Qualquer quadro que estiver dentro da janela pode ser aceito e colocado no buffer até todos os quadros precedentes terem sido transmitidos à camada de rede. Essa abordagem poderá exigir um volume de memória muito grande da camada de enlace de dados, caso a janela seja muito grande.

Esses dois enfoques alternativos traduzem compromissos entre largura de banda e espaço no buffer da camada de enlace de dados. Dependendo de qual recurso seja mais escasso, um ou outro poderá ser usado. O Código 1.5 mostra um protocolo de pipelining no qual a camada de enlace de dados receptora aceita apenas quadros em ordem; os quadros que vierem depois de um quadro com erro serão descartados. Nesse protocolo, abandonamos pela primeira vez a suposição de que a camada de rede sempre tem um suprimento infinito de pacotes a enviar. Quando a camada de rede tem um pacote que deseja enviar, ela pode provocar a ocorrência de um evento nevwork_layer_ready. Entretanto, para reforçar a regra de controle de fluxo que não permite mais de MAX_SEQ quadros não-confirmados pendentes em qualquer instante, a camada de enlace de dados deve ser capaz de proibir a camada de rede de sobrecarregá-la com mais trabalho. Os procedimentos de biblioteca enable_network_layer e disable_network_layer executam essa função.

/* O protocolo 5 (go back n) permite a existência de muitos quadros pendentes. O transmissor poderá transmitir até MAX_SEQ quadros sem a necessidade de esperar por uma confirmação. Além disso, ao contrário dos protocolos anteriores, não presumimos que a camada de rede está sempre recebendo um novo pacote. Em vez disso a camada de rede provoca um evento network_layer_ready quando há um pacote a ser enviado. */

#define MAX_SEQ 7

/* deve ser 2^n – 1 */
typedef enum {frame_arrival, cksum_err, timeout, network_layer_ready} event_type;

#include “protocol .h”
static boolean between(seq_nr a, seqnr b, seq_nr c) {
/* Retorna true se a <= b < c, de forma circular; caso contrário, retorna false. */

 if (((a <= b) && (b < c)) || ((c <a) && (a <= b)) || ((b < c) && (c <a)))

 return(true);

 else

 return(false);

}

static void send_data(seq_nr frame_nr, seq_nr frame_expected, packet buffer[])

{

/* Constrói e envia um quadro de dados. */

 frame s;

/* variável de rascunho */

 s.info buffer = buffer[frame_nr];
/* insere pacote em quadro */

 s.seq = frame_nr;

/* insere número de seqüência em quadro */

 s.ack = (frame_expected + MAX_SEQ) %(MAX_SEQ + 1);
/* confimação com piggyback*/

 to_physical_layer(&s);

/* transmite o quadro */
 start_timer(frame_nr);

/* inicializa o timer atual */
}

void protocol5(void)

{

 seq_nr next_frame_tosend;

/* MAX_SEQ > 1; usado para fluxo enviado */

 seq_nr ack_expected;

/* quadro mais antigo ainda não confirmado */

 seq_nr frame_expected;

/* próximo quadro esperado no fluxo recebido */
 frame r;

/* variável de rascunho */

 packet buffer[MAX_SEQ + 1];
/* buffers para o fluxo enviado */

 seq_nr nbuffered;

/* # buffers de saída atualmente em uso*/
 seq_nr i;

/* usada para indexar no array do buffer */

 event_type event;
 enable_network_layer();

/* ativa eventos network_layerjeady */
 ack_expected = 0;

/* próxima confirmação esperada recebida */

 next_frame_to_send = 0;

/* próximo quadro de saída */
 frame_expected = 0;

/* número de quadro recebido esperado */

 nbuffered = 0;
/*inicialmente, nenhum pacote é inserido no buffer*/

 while (true) {

 wait_for_event (&event);
/*quatro possibilidades: veja event_type anterior */

 switch(event) {
 case network_layer_ready:
/* a camada de rede tem um pacote a enviar*/

 /* Aceita, salva e transmite um novo quadro. */

 from_network_layer(&buffer[next_frame_to_send]);/*busca novo pacote*/

 nbuffered = nbuffered + 1;

/* expande a janela do transmissor */

 send_data(next_frame_to_send, frame_expected buffer);
/*transmite o quadro */

 inc(next_frame_to_send);
/* avança a borda superior da janela do transmissor */

 break;

 case frame_arrival;

/* chegou um quadro de dados ou de controle */

 from_physical_layer(&r);
/* busca quadro recebido na camada física */

 if (r.seq == frame_expected){

 /* Quadros só são aceitos em ordem. */

 to_network_layer(&r.info);
/* repassa pacote ã camada de rede */

 inc(frame_expected);
/*avança borda inferior da janela do receptor*/
 }

 /* Confirmação de n implica n - 1, n - 2 etc. Verifique isso. */

 while (between (ack_expected, r.ack, next_frame_to_send)){

 /* Trata confirmação com piggyback. */

 nbuffered = nbuffered - 1;
/* um quadro a menos no buffer */

 stop_timer(ack_expected);
/* quadro chegou intacto; interrompe timer */

 inc(ack_expected);

/* contrai janela do transmissor */

 }

 break;

 case cksum_err: break;
/* simplesmente ignora quadros incorretos /

 case timeout:
/* problema; retransmite todos os quadros pendentes*/

 next_frame_to_send = ack_expected; /* inicia retransmissão aqui */

 for (i = 1; i <= nbuffered; i++) {
 send_data(next_frame_to_send, frame_expected, buffer);
/* envia quadro novamente */

 inc(next_frame_to_send);
/* prepara-se para enviar o próximo*/
 }

 }

 if (nbuffered < MAX_SEQ)

 enable_network_layer();

 else

 disable_network_layer();

 }

}

Código 1.5 Um protocolo de janela deslizante que utiliza go back n.
Observe que no máximo MAX_SEQ quadros, e não MAX_SEQ + 1, podem estar pendentes em qualquer instante, mesmo que haja MAX_SEQ + 1 números de seqüência distintos: 0, 1,2, ..., MAX_SEQ. Para saber por que essa restrição é necessária, considere a situação a seguir, com MAX_SEQ = 7.

1. O transmissor envia quadros de 0 a 7.
2. Uma confirmação com piggyback (sobreposta) para o quadro 7 volta eventualmente ao transmissor.

3. O transmissor envia mais oito quadros, novamente com números de seqüência de 0 a 7.

4. Agora chega outra confirmação com piggyback correspondente ao quadro 7.

A questão é: os oito quadros pertencentes ao segundo lote chegaram com sucesso ou todos eles se perderam (a contagem descarta os quadros posteriores a um erro, considerando-os perdidos)? Nos dois casos, o receptor estaria enviando o quadro 7 como confirmação. O transmissor não tem como saber disso. Por essa razão, o número máximo de quadros pendentes deve se restringir a MAX_SEQ.

Apesar de não armazenar no buffer os quadros recebidos após um quadro com erro, o protocolo 5 não escapa totalmente ao problema do armazenamento em buffer. Tendo em vista que um transmissor talvez seja obrigado a retransmitir todos os quadros não-confirmados em um determinado momento no futuro, ele deverá reter todos os quadros transmitidos até ter certeza de que eles foram aceitos pelo receptor. Quando uma confirmação chega para o quadro n, os quadros n - 1, n - 2 e assim por diante também são confirmados de forma automática. Essa propriedade é especialmente importante nos casos em que alguns dos quadros anteriores que representavam confirmações se perderam ou foram adulterados. Sempre que uma confirmação chega, a camada de enlace de dados verifica se algum buffer pode ser liberado. Se os buffers puderem ser liberados (isto é, se houver espaço disponível na janela), uma camada de rede bloqueada anteriormente poderá ter permissão para provocar mais eventos network_layer_ready.

Para esse protocolo, supomos que sempre existe tráfego no sentido inverso, para que as confirmações possam ser transportadas por piggyback. Se não houver tráfego inverso, nenhuma confirmação poderá ser enviada. O protocolo 4 não precisa dessa suposição, pois ele envia um quadro de volta toda vez que recebe um quadro, mesmo que tenha acabado de enviar esse quadro. No próximo protocolo, resolveremos de modo elegante o problema do tráfego de mão única.

Por ter vários quadros pendentes, é claro que o protocolo 5 necessita de vários timers, um para cada quadro pendente. Cada quadro tem um timeout independente de todos os demais. Todos esses timers podem ser facilmente simulados por software, usando-se um único relógio de hardware que provoca interrupções periódicas. Os timeouts pendentes formam uma lista ligada, com cada nó da lista informando a quantidade de pulsos do relógio até o timer expirar, o quadro que está sendo sincronizado e um ponteiro para o nó seguinte.

Para ilustrar como os timers poderiam ser implementados, considere o exemplo da Figura 3.18(a). Suponha que o relógio pulse uma vez a cada 100 ms. Iniciairnente, o tempo real é 10:00:00.0 e há três timeouts pendentes, em 10:00:00.5. 10:00:01.3 e 10:00:01.9. Toda vez que o relógio de hardware pulsar, o tempo real será atualizado e o contador de pulsos no início da lista será decrementado. Quando o contador de pulsos for igual a zero, ocorrerá um timeout e o nó será removido da lista, como mostra a Figura 3.18(b). Embora essa organização exija que a lista seja examinada quando start_timer ou stop_timer for chamado, ela não requer muito trabalho por pulso. No protocolo 5, essas duas rotinas receberam um parâmetro, que indica o quadro a ser sincronizado.

[image: image5.png]Tempo

[, [10:00:00.0 1/ = [, T 10:00:005 |

s 1]l F-{8l2] 6] 3[X] [8]2] {s]3[X]

Ponteiro para o préximo timeout
Quadro que esta sendo sincronizado
Pulsos que faltam

(@ (b)

Figura 3.18 Simulag&o de vérios timers por software

3.3 Protocolo que utiliza retransmissão seletiva

O protocolo 5 funciona bem quando há poucos erros, mas, se a linha estiver muito ruidosa, ele desperdiçará muita largura de banda com os quadros retransmitidos. Uma estratégia alternativa para lidar com erros é permitir que o receptor aceite e coloque no buffer os quadros subseqüentes a um quadro danificado ou perdido. Esse protocolo não descarta quadros apenas porque um quadro anterior foi danificado ou perdido.

Nesse protocolo, tanto o transmissor quanto o receptor mantêm uma janela de números de seqüência aceitáveis. O tamanho da janela do transmissor é medido a partir de 0 e atinge um número máximo predefinido, MAX_SEQ. Por outro lado, a janela do receptor tem sempre um tamanho fixo e igual a MAX_SEQ. O receptor tem um buffer reservado para cada número de seqüência dentro de sua janela fixa. Associado a cada buffer há um bit (arrived) que informa se o buffer está cheio ou vazio. Sempre que um quadro chega, seu número de seqüência é verificado pela função between, para confirmar se ele se enquadra na janela. Se isso ocorrer e se o quadro ainda não tiver sido recebido, ele será aceito e armazenado. Essa ação é executada sem levar em conta se o quadro contém ou não o próximo pacote esperado pela camada de rede. E óbvio que ele deve ser mantido dentro da camada de enlace de dados e não deve ser repassado à camada de rede, até que todos os quadros de números mais baixos já tenham sido entregues à camada de rede na ordem correta. Um protocolo que utiliza esse algoritmo é apresentado no Código 1.6.

/* O protocolo 6 (retransmissão seletiva) aceita quadros fora de ordem, mas repassa pacotes para a camada de rede obedecendo à ordem de transmissão. Há um timer associado a cada quadro pendente. Quando o timer expira, apenas o quadro que o contém é retransmitido, e não todos os quadros pendentes, como ocorria no protocolo 5. */

#define MAX_SEQ
/* deve ser 2 ^n - 1 */

#define NR_BUFS ((MAX_SEQ + 1)/2)

typedef enum (frame_arrival, cksum_err, timeout, network_layer_ready, ack_timeout}

event_type;

#include “protocol .h”
boolean no_nak = true;

/* nenhuma nak enviada ainda */

seq_nr oldest_frame = MAX_SEQ + 1;
/* valor inicial apenas para o simulador */

static boolean between(seq_nr a, seq_nr b, seq_nr c)

{

/* Igual a between do protocolo 5, mas é menor e mais obscuro. */

 return ((a <= b) && (b < c)) || ((c < a) && (a <= b)) || ((b < c) && (c < a));

}

static void send_frame(frame_kind fk, seq_nr frame_nr, seq_nr frame_expected, packet buffer[])

{

/* Monta e envia um quadro de dados, ack ou nak. */

 frame s;

/* variável de rascunho */

 s.kind = fk;

/* kind == data, ack ou nak */

 if (fk data) s.info = [frame_nr % NR_BUFS);

 s.seq = frame_nr;

/* só tem significado para quadros de dados */

 s.ack (frame_expected + MAX_SEQ) % (MAX_SEQ + 1);

 if (fk == nak) no_nak = false;
/* uma nak para cada quadro, por favor */

 to_physical_layer(&s);

/* transmite o quadro */

 if (fk == data) start_timer (frame_nr % NR_BUFS);

 stop_ack_timer();

/* não precisa de quadro ack separado */

}

void protocol6(void)

{

 seq_nr ack_expécted;

/* borda inferior da janela do transmissor */

 seq_nr next_frame_to_send;
/ * borda superior da janela do transmissor + 1*/
 seq_nr frame_expected;

/* borda inferior da janela do receptor */

 seq_nr too_far;

/* borda superior da janela do receptor + 1 */
 int i;

/* índice para pool de buffers */

 frame r;

/* variável de rascunho */

 packet out_buf[NR_BUFS];
/* buffers para o fluxo enviado */

 packet in_buf[NR_BUFS];

/* buffers para o fluxo recebido */

 boolean arrived[NR_BUFS];
/* bitmap de entrada */

 seq_nr nbuffered;

/* número de buffers de saída em uso*/

 event_type event;

 enable_network_layer();

/* inicializa */

 ack_expected = 0;

/* próximo quadro esperado no fluxo recebido*/

 next_frame_to_send = 0;

/* número do próximo quadro a ser enviado */

 frame_expected = 0;

 too_far = NRBUFS;

 nbuffered = 0;
/* nenhum pacote é inserido no buffer inicialmente */

 for (i = 0; i < NR_BUFS; i++) arrived[i] = false;

 while (true) {

 wait_for_event(&event);

/* cinco possibilidades: veja event_type anterior /

 switch(event) {

 case network_layer_ready:
/* aceita, salva e transmite um novo quadro */
 nbuffered = nbuffered + 1;
/* expande a janela */
 from_network_layer(&out_buf[next_frame_to_send % NRBUFS]);/* busca novo pacote */

 send_frame(data, nextframetosend, -frameexpected, outbuf);
/* transmite o quadro */
 inc(next_frame_to_send);
/* avança borda superior da janela */

 break;

 case frame_arrival:

/* chegou um quadro de dados ou de controle */

 from_physical_layer(&r);
/* busca quadro recebido da camada física */

 if (r.kind == data){

 /* Chegou um quadro sem danos. */

 if ((r.seq != frame_expected) && no_nak)

 send_frame(nak, 0, frame_expected, out_buf); else start_ack_timer();

 if (between(frame_expected, r.seq, too_far) && (arrived == false)) {

 /* Os quadros podem ser aceitos em qualquer ordem. */

 arrived[r.seq % NR_BUFS] = true; /* marca buffer como cheio */

 in_buf[r.seq % NR_BUFS] = r.info; /* insere dados no buffer */

 while (arrived[frame_expected % NR_BUFS]) {

 /* Repassa quadros e avança janela. */

 to_network_layer(&in_buf[frame_expected % NR_BUFS]);

 no_nak = true;

 arrived[fram_expected% NR_BUFS] = false;

 inc(frame_expected);
/* avança borda inferior da janela do receptor */
 inc(too_far);

/* avança borda superior da janela do receptor */

 start_ack_timer();

/* para ver se é necessária uma ack separada */
 }

 }
 }
 if((r.kind == nak) && between(ack_expected, (r.ack+1)%(MAX_SEQ + 1),next_frame_to_send));
 send_frame(data, (r.ack+1) % (MA_XSEQ + 1), frame_expected, out_buf);
 while (between(ack_expected, r.ack, next_frame_to_send)) {

 nbuffered = nbuffered - 1;
/* trata ack com piggyback */

 stop_timer(ack_expected % NR_BUFS);
/* quadro chegou intacto */

 inc(ack_expected);

/* avança borda inferior da janela do transmissor */

 }
 break;

 case cksum_err:

 if (no_nak) send_frame(nak, 0, frame_expected, out_buf);
/*quadro danificado*/

 break;

 case timeout:

 send_frame(data, oldest_frame, frame_expected, out_buf);
/* chegamos ao timeout */

 break;

 case ack_timeout:

 send_frame(ack,0,frame_expected, out_buf);
/*timer de ack expirou; envia ack*/

 }
 if (nbuffered < NR_BUFS) enable_network_layer(); else disable_network_layer();

 }

}

Código 1.6 Um protocolo de janela deslizante que utiliza a retransmissão seletiva.
A recepção não-seqüencial introduz determinados problemas que não estão presentes em protocolos nos quais os quadros só são aceitos em ordem. Podemos ilustrar melhor o problema com um exemplo. Imagine que haja um número de seqüência de 3 bits, de modo que o transmissor tenha permissão para transmitir até sete quadros antes de ser obrigado a esperar por uma confirmação. Inicialmente, as janelas do transmissor e do receptor são semelhantes às da Figura 3.20(a). No momento, o transmissor envia os quadros de 0 a 6. A janela do receptor permite que ele aceite qualquer quadro com número de seqüência entre 0 e 6 inclusive. Todos os sete quadros chegam corretamente; assim, o receptor os confirma e avança a janela para permitir a recepção de 7, 0, 1, 2, 3, 4 ou 5, como mostra a Figura 3.20(b). Todos os sete buffers são marcados como vazios.

[image: image6.png]Transmissor

Receptor

0123456

01234567

01283

0123456

0123456

@

(b)

0123

(©

4567

4567

0123

0123

4567

4567

(d)

Figura 3.20 (a) Situagao inicial com uma janela de tamanho sete. (b) Depois
que sete quadros sdo enviados e recebidos, mas nédo confirmados. (c) Situagéo inicial
com uma janela de tamanho quatro. (d) Depois que quatro quadros sdo
enviados e recebidos, mas ndc confirmados

Nesse ponto ocorre o desastre, na forma de um raio que atinge a central telefônica e apaga todas as confirmações. Mais tarde, o transmissor entra em timeout e retransmite o quadro 0. Quando esse quadro chega ao receptor, é feita uma conferência para ver se o quadro se ajusta à janela do receptor. Infelizmente, na Figura 3.20(b), o quadro 0 está dentro da nova janela e, assim ele será aceito. O receptor envia uma confirmação com piggyback para o quadro 6, pois os quadros de 0 a 6 foram recebidos.

O transmissor fica feliz em saber que todos os quadros transmitidos chegaram realmente de forma correta; portanto, ele avança sua janela e envia imediatamente os quadros 7, 0, 1, 2, 3, 4 e 5. O quadro 7 será aceito pelo receptor e seu pacote será repassado diretamente à camada de rede. Logo depois, a camada de enlace de dados receptora verifica se já tem um quadro 0 válido, descobre que sim e repassa o pacote incorporado à camada de rede. Conseqüentemente, a camada de rede recebe um pacote incorreto e o protocolo falha.

A essência do problema é que, depois que o receptor avançou a janela, a nova faixa de números de seqüência válidos substituiu a antiga. O próximo lote de quadros poderia ser formado por cópias (se todas as confirmações se perderam) ou de novos quadros (se todas as confirmações foram recebidas). O receptor não tem como distinguir esses dois casos.

A saída desse dilema reside em ter certeza de que, depois que o receptor avança sua janela, não há sobreposição entre esta e a janela original. Para assegurar que não há sobreposição, o tamanho máximo da janela deve ser igual à metade do intervalo dos números de seqüência, como ocorre nas Figuras 3.20(c) e 3.20(d). Por exemplo, se forem utilizados 4 bits para os números de seqüência, estes irão variar de 0 a 15. Apenas oito quadros não-confirmados devem estar pendentes em qualquer instante. Dessa forma, se o receptor só tiver aceito os quadros de 0 a 7 e avançado sua janela para aceitar os quadros de 8 a 15, ele poderá saber sem qualquer dúvida se os quadros subseqüentes são retransmissões (0 a 7) ou novos quadros (8 a 15). Em geral, o tamanho da janela para o protocolo 6 será (MAX_SEQ + 1)/2. Desse modo, para números de seqüência de três bits, o tamanho da janela é quatro.

Uma pergunta interessante é: quantos buffers o receptor deverá ter? De maneira alguma ele aceitará quadros cujos números de seqüência estejam abaixo da borda inferior da janela ou acima da borda superior. Conseqüentemente, o número de buffers necessário é igual ao tamanho da janela, e não ao intervalo dos números de seqüência. No exemplo anterior de um número de seqüência de 4 bits, são necessários oito buffers, numerados de 0 a 7. Quando o quadro i chega, ele é colocado no buffer i mod 8. Observe que apesar de i e (i + 8) mod 8 estarem “competindo” pelo mesmo buffer, eles nunca estão dentro da janela ao mesmo tempo, pois isso implicaria um tamanho de janela de no mínimo 9.

Pela mesma razão, o número de timers necessários é igual ao número de buffers, e não ao tamanho do espaço de seqüência. Efetivamente, existe um timer associado a cada buffer. Quando o timer chega ao seu timeout, o conteúdo do buffer é retransmitido.

No protocolo 5, há uma suposição implícita de que o canal está muito carregado. Quando um quadro chega, nenhuma confirmação é enviada imediatamente. Em vez disso, a confirmação é transportada junto com o próximo quadro de dados a ser enviado. Se o tráfego inverso for leve, a confirmação será retida por um longo período de tempo. Se houver um tráfego intenso em um sentido e nenhum tráfego no outro, apenas pacotes MAX_SEQ serão enviados, e então o protocolo será bloqueado; foi por essa razão que tivemos de supor que sempre havia algum tráfego no sentido inverso.

No protocolo 6, esse problema é corrigido. Depois que um quadro de dados seqüencial é recebido, um timer auxiliar é iniciado por start_ack_timer. Se nenhum tráfego inverso tiver se apresentado antes do término do intervalo de temporização, um quadro de confirmação separado será enviado. Uma interrupção provocada pelo timer auxiliar é chamada evento ack_timeout. Diante dessa organização, o fluxo de tráfego unidirecional passa a ser possível nesse momento, pois a falta de quadros de dados inversos nos quais as confirmações podem ser transportadas não representa mais um obstáculo. Existe apenas um timer auxiliar e, se start_ack_timer for chamado durante o intervalo em que o timer estiver funcionando, ele será reinicializado para um período completo de timeout de confirmação.

É essencial que o timeout associado ao timer auxiliar seja ligeiramente mais curto que o timer utilizado para sincronizar quadros de dados. Essa condição é necessária para assegurar que a confirmação de um quadro corretamente recebido chegue antes de expirar o timer de retransmissão do quadro, de modo que o transmissor não tenha de retransmitir o quadro.

O protocolo 6 utiliza uma estratégia mais eficiente que o protocolo 5 para tratamento de erros. Sempre que tem motivos para suspeitar da ocorrência de um erro, o receptor envia um quadro de confirmação negativa (NAK) de volta ao transmissor. Esse quadro é um pedido de retransmissão do quadro especificado na NAK. Existem dois casos que podem provocar a suspeita do receptor: a chegada de um quadro danificado ou de um quadro diferente do esperado (quadro potencialmente perdido). Para impedir que sejam feitas várias solicitações de retransmissão do mesmo quadro perdido, o receptor deve controlar se já foi enviada uma NAK correspondente a um dado quadro. A variável no_nak do protocolo 6 será verdadeira se nenhuma NAK tiver sido enviada ainda para frame_expected. Se a NAK for danificada ou perdida, não haverá qualquer prejuízo real pois, com o término do intervalo de timeout, o transmissor irá retransmitir o quadro ausente, de qualquer forma. Se um quadro errado chegar depois que uma NAK tiver sido enviada e perdida, no_nak será verdadeira e o timer auxiliar será inicializado. Quando o timer expirar, uma ACK será enviada para ressincronizar o transmissor com o status atual do receptor.

Em algumas situações, o tempo necessário para que um quadro se propague até o destino, seja processado e tenha a confirmação retornada é (praticamente) constante. Nessas situações, o transmissor pode ajustar seu timer para um tempo ligeiramente maior que o intervalo normal esperado entre o envio de um quadro e a recepção de sua confirmação. Entretanto, se o tempo for bastante variável, o transmissor terá de optar entre ajustar o intervalo com um valor pequeno (e arriscar-se a retransmissões desnecessárias) ou ajustá-lo com um valor grande (e ficar ocioso por um longo período após um erro).

Ambas as opções desperdiçam largura de banda. Se o tráfego inverso for esporádico, o tempo antes da confirmação será irregular, sendo mais curto quando houver tráfego inverso e mais longo quando não houver. O tempo de processamento variável dentro do receptor também pode ser um problema nesse caso. Em geral, sempre que o desvio-padrão do intervalo de confirmação é pequeno em comparação com o próprio intervalo, o timer pode ser ajustado “com maior rigor” e as NAKs deixam de ser úteis. Caso contrário, o timer pode ser ajustado “mais livremente”, a fim de evitar retransmissões desnecessárias; porém, as NAKs podem acelerar bastante a retransmissão de quadros perdidos ou danificados.

Um problema intimamente relacionado com o uso de timeouts e NAKs é a questão de determinar o quadro que provocou um timeout. No protocolo 5, ele é sempre ack_expected, porque é sempre o mais antigo. No protocolo 6, não há qualquer forma trivial para determinar o quadro que chegou ao timeout. Imagine que os quadros de 0 a 4 tenham sido transmitidos, significando que a lista de quadros pendentes é 01234, na ordem do mais antigo para o mais recente. Agora, imagine que o quadro 0 chegue ao timeout, que 5 (um novo quadro) seja transmitido, 1 e 2 cheguem ao timeout e 6 (outro quadro novo) seja transmitido. Nesse ponto, a lista de quadros pendentes será 3405126, na ordem do mais antigo para o mais recente. Se todo o tráfego de chegada (isto é, quadros que transportam confirmações) for perdido durante algum tempo, esses sete quadros pendentes chegarão ao timeout nessa ordem.

Para evitar que o exemplo fique ainda mais complicado do que já está, não mostramos a administração do timer. Em vez disso, consideramos apenas que a variável oldest_frame está ativa no momento do timeout para indicar o quadro que chegou ao timeout.

4 PROTOCOLOS DE ENLACE DE DADOS

Nas próximas seções, serão examinados diversos protocolos de enlace de dados muito utilizados. O primeiro deles, denominado HDLC, é um protocolo clássico orientado a bits, cujas variantes foram utilizadas durante décadas em muitas aplicações, O segundo, chamado PPP, é o protocolo de enlace de dados utilizado para conectar computadores domésticos à Internet.

4.1 HDLC — High-Ievel Data Link Control

Nesta seção, examinaremos um grupo de protocolos intimamente relacionados que, apesar de um pouco antigos, continuam sendo bastante utilizados. Todos eles são derivados do protocolo de enlace de dados utilizado primeiro no mundo dos computadores de grande porte da IBM: o protocolo SDLC (Synchronous Data Link Control — controle de enlace de dados síncrono). Depois de desenvolver o SDLC, a IBM o submeteu ao ANSI e à ISO para aceitação como um padrão nos Estados Unidos e no mundo inteiro, respectivamente. O ANSI o modificou, transformando-o no ADCCP (Advanced Data Communication Control Procedure — procedimento de controle de comunicação de dados avançado), e a ISSO o alterou, para transformá-lo no HDLC (High-level Data Link Control — controle de enlace de dados de alto nível). Depois disso, o CCITT adotou e modificou o HDLC e o transformou em seu LAP (Link Access Procedure — procedimento de acesso de enlace), como parte do padrão de interface de rede X.25. Porém, mais tarde, o CCITT modificou o padrão novamente e passou a chamá-lo LAPB, a fim de torná-lo mais compatível com uma versão posterior do HDLC. A característica mais interessante dos padrões é que há muitos deles para se escolher. Além disso, se não gostar de nenhum, você poderá simplesmente esperar pelo modelo do próximo ano.

Esses protocolos se baseiam nos mesmos princípios. Todos são orientados a bits, e todos utilizam a técnica de inserção de bits para transparência de dados. Eles diferem apenas em pequenos e irritantes detalhes. A discussão dos protocolos orientados a bits apresentada a seguir foi elaborada como uma introdução geral. Para obter detalhes específicos a respeito de qualquer protocolo, consulte a definição apropriada.

Todos os protocolos orientados a bits utilizam a estrutura de quadro apresentada na Figura 3.24. O campo Endereço é importante, principalmente nas linhas com vários terminais, onde ele é utilizado para identificar um dos terminais. No caso de linhas ponto a ponto, às vezes esse campo é utilizado para fazer distinção entre comandos e respostas.
[image: image7.png]Bits

8

8

8

>0

16

8

01111110

Enderego

Controle

Dados

Total de verificagao

01111110

Figura 3.24 Formato de quadro para protocolos orientados a bits

O campo Controle é usado para números de seqüência, confirmações e outras finalidades, como será discutido a seguir.

O campo Dados pode conter qualquer informação. Ele pode ser arbitrariamente longo, embora a eficiência do total de verificação diminua com o aumento do comprimento do quadro, devido à maior probabilidade de ocorrerem vários erros em rajada.

O campo Total de verificação é uma variação do código de redundância cíclica que utiliza a técnica examinada na Seção 3.2.2.

O quadro é delimitado por outra seqüência de flag (01111110). Nas linhas ponto a ponto ociosas, as seqüências de flags são transmitidas de forma contínua. O quadro mínimo contém três campos e totaliza 32 bits, excluindo os flags de cada extremidade.

Existem três tipos de quadros: Quadro de informação, Quadro supervisor e Quadro não-numerado. O conteúdo do campo Controle para esses três tipos de quadros é apresentado na Figura 3.25. O protocolo utiliza uma janela deslizante, com um número de seqüência de 3 bits. A qualquer momento, pode haver até sete quadros não-confirmados pendentes. O campo Seq da Figura 3.25(a) é o número de seqüência do quadro. O campo Próximo é uma confirmação transportada por piggyback. Entretanto, todos os protocolos aderem à convenção de, em vez de transportar o número do último quadro recebido corretamente, utilizar o número do primeiro quadro ainda não-recebido (isto é, o próximo quadro esperado). A escolha entre utilizar o último quadro recebido ou o próximo quadro esperado é arbitrária; não importa que convenção é adotada, desde que ela seja utilizada de forma coerente.

[image: image8.png]Bits 1 3 1 3

(a)l O Seq P/F Préximo
®| 1 0 Tipo P/F Préximo
©| 1 1 Tipo P/F Modificador

Figura 3.25 Campo de controle de (a) um quadro de informagéo,
(b) um quadro supervisor e (c) um quadro ndo-numerado

O bit P/F representa Poll/Final. Ele é utilizado quando um computador (ou concentrador) está consultando um grupo de terminais. Quando utilizado como P, o computador está convidando o terminal a enviar os dados. Todos os quadros enviados pelo terminal, com exceção do quadro final, têm o bit P/F definido como P. O quadro final é definido como F

Em alguns protocolos, o bit P/F é utilizado para forçar a outra máquina a enviar imediatamente um quadro supervisor, em vez de aguardar o tráfego inverso para inserir nele as informações da janela. O bit também tem alguns usos menos importantes relacionados aos quadros não-numerados.

Os diversos tipos de quadros supervisores se distinguem pelo campo Tipo. O Tipo 0 é um quadro de confirmação (denominado oficialmente RECEIVE READY) usado para indicar o próximo quadro esperado. Esse quadro é utilizado quando não há tráfego inverso que permita o uso do piggybacking.

O Tipo 1 é um quadro de confirmação negativa (denominado oficialmente REJECT). Ele é utilizado para indicar a detecção de um erro de transmissão. O campo Próximo indica o primeiro quadro da seqüência não-recebido corretamente (isto é, o quadro a ser retransmitido). O transmissor é solicitado a retransmitir todos os quadros pendentes a partir de Próximo. Essa estratégia é semelhante ao nosso protocolo 5, e não ao protocolo 6.

O Tipo 2 é RECEIVE NOT READY. Ele confirma todos os quadros até (mas não incluindo) Próximo, exatamente como RECEIVE READY, mas solicita que o transmissor interrompa o envio de quadros. RECEIVE NOT READY tem como objetivo informar a existência de determinados problemas temporários com o receptor, tais como a insuficiência de buffers, e não representa uma alternativa para o controle de fluxo de janela deslizante. Quando a condição tiver sido corrigida, o receptor enviará RECEIVE READY, REJECT ou certos quadros de controle.

O Tipo 3 é SELECTIVE REJECT, que solicita a retransmissão apenas do quadro especificado. Nesse sentido, ele se assemelha mais ao nosso protocolo 6 que ao protocolo 5 e, portanto, é mais útil quando o tamanho da janela do transmissor é menor ou igual à metade do tamanho do espaço de seqüência. Dessa forma, se um receptor desejar armazenar quadros fora de seqüência no buffer para uma possível utilização futura, ele poderá forçar a retransmissão de qualquer quadro específico utilizando SELECTIVE REJECT. O HDLC e o ADCCP permitem esse tipo de quadro, mas o SDLC e o LAPB não o permitem (isto é, não há SELECTIVE REJECT), e os quadros do Tipo 3 são indefinidos.

A terceira classe de quadro é o quadro não-numerado que, às vezes, é utilizado para fins de controle, mas que também pode transportar dados quando é utilizado o serviço não-confiável sem conexão. Os diversos protocolos orientados a bits diferem consideravelmente nesse ponto, ao contrário dos outros dois tipos, nos quais eles são quase idênticos. Há cinco bits disponíveis para indicar o tipo de quadro, mas nem todas as 32 possibilidades são utilizadas.

Todos os protocolos dispõem de um comando, DISC (de DlSConnect — Des conectar), que permite a uma máquina anunciar que está se desativando (por exemplo, para manutenção preventiva). Eles também oferecem um comando que permite a uma máquina que acabou de se conectar anunciar sua presença e forçar todos os números de seqüência de volta a zero. Esse comando é denominado SNRM (Set Normal Response Mode). Infelizmente, o “modo normal de resposta” é tudo, menos normal. Trata-se de um modo desbalanceado (isto é, assimétrico) em que um extremo da linha é o mestre e o outro é o escravo. O SNRM data de uma época em que a comunicação de dados significava um terminal burro que se comunicava com um enorme computador host, algo claramente assimétrico. Para tornar o protocolo mais adequado quando os dois parceiros são iguais, o HDLC e o LAPB têm um comando adicional, o SABM (Set Asynchro nous Balanced Mode), que restabelece a linha e declara as duas partes como equivalentes. Eles também têm comandos SABME e SNRME, que são iguais aos co mandos SABM e SNRM, respectivamente, exceto pelo fato de ativarem um formato de quadro estendido que utiliza números de seqüência de 7 bits em lugar de números de seqüência de 3 bits.

Um terceiro comando fornecido por todos os protocolos é o FRMR (FRaMe Reject), utilizado para indicar a chegada de um quadro com total de verificação correto, mas de semântica impossível. Exemplos de semântica impossível são um quadro supervisor do tipo 3 em LAPB, um quadro com menos de 32 bits, um quadro de controle inválido e uma confirmação de um quadro que estava fora da janela etc. Os quadros de FRMR contêm um campo de dados de 24 bits que informa o que estava errado com o quadro. Dentre esses dados, estão o campo de controle do quadro com erros, os parâmetros da janela e um conjunto de bits que indica erros específicos.

Os quadros de controle podem estar perdidos ou danificados, da mesma for ma que os quadros de dados, e assim eles também devem ser confirmados. Um quadro de controle especial, denominado UA (Unnumbered Acknowledgment), é fornecido para esse fim. Como apenas um quadro de controle pode estar pendente, nunca haverá qualquer ambigüidade em relação ao quadro de controle que está sendo confirmado.

Os quadros de controle restantes se referem à inicialização, ao polling e a relatórios de status. Também existe um quadro de controle que pode conter informações arbitrárias, o Ul (Unnumbered Information). Esses dados não são repassados à camada de rede, mas se destinam à própria camada de enlace de dados do receptor.

Apesar de sua ampla utilização, o HDLC está longe de ser perfeito. Uma discussão sobre uma variedade de problemas associados a ele pode ser encontrada em Fiorini et al. (1994).
4.2 A camada de enlace de dados na Internet

A Internet consiste em máquinas individuais (hosts e roteadores) e na infra-estrutura de comunicação que as conecta. Dentro de um único prédio, as LANs são bastante utilizadas para interconexões, mas grande parte da infra-estrutura geograficamente distribuída é construída a partir de linhas privadas ponto a ponto.

Na prática, a comunicação ponto a ponto é utilizada principalmente em duas situações. Na primeira delas, milhares de organizações têm uma LAN ou mais, cada uma com um determinado número de hosts (computadores pessoais, estações de trabalho, servidores etc.) e um roteador (ou uma ponte, de funcionalidade semelhante). Com freqüência, os roteadores são interconectados por uma LAN de backbone. Em geral, todas as conexões com o mundo exterior passam por um ou dois roteadores que têm linhas privadas (também chamadas linhas de dicadas) ponto a ponto com roteadores distantes. São esses roteadores e suas linhas privadas que compõem as sub-redes de comunicação, nas quais a Internet se baseia.

A segunda situação em que as linhas ponto a ponto executam uma função importante na Internet diz respeito aos milhões de indivíduos que estabelecem conexões domésticas com a Internet utilizando modems e linhas telefônicas com acesso por discagem. Geralmente, o PC doméstico do usuário estabelece uma conexão com o roteador de um provedor de serviços da Internet, e depois atua como um host da Internet completo. Esse método de operação não difere de ter uma linha privada entre o PC e o roteador, exceto pelo fato de a conexão ser encerrada quando o usuário finaliza a sessão. Um PC doméstico que se conecta a um provedor de serviços da Internet está ilustrado na Figura 3.26. Mostramos o modem externo ao computador para enfatizar sua função, mas os computadores modernos têm modems internos.

[image: image9.png]Casa do usudrio Instalagdes do provedor da Internet

1

]

i

Processo cliente |
que utiliza TCP/IP) Linha telefdnica

i

I

I

]

1

L1

)

com acesso
por discagem

.....

Modem i) /
! Conex&@o TCP/IP
! que utiliza PPP
1

I 5(
L e e e e e e e 1 ._______-____/Z___J_ -_—
Roteador Processo de

roteamento

J

Figura 3.26 Um computador pessoal doméstico que atua como um host da Internet

Tanto para a conexão de linha privada entre roteadores quanto para a conexão com acesso por discagem entre o host e o roteador, é necessário o uso de um protocolo de enlace de dados ponto a ponto na linha para cuidar do enquadramento, do controle de erros e de outras funções da camada de enlace de dados que estudamos neste capítulo. O único protocolo utilizado na Internet é o PPP. Vamos examiná-lo agora.

PPP — Point-to-Point Protocol

A Internet precisa de um protocolo ponto a ponto para diversos fins, inclusive para cuidar do tráfego de roteador para roteador e de usuário doméstico para ISP (provedor de serviços da Internet). Esse protocolo é o PPP (Point-to-Point Protocol — protocolo ponto a ponto), definido na RFC 1661 e mais elaborado em várias outras RFCs (por exemplo, as RFCs 1662 e 1663). O PPP trata da detecção de erros, aceita vários protocolos, permite que endereços IP sejam negociados em tempo de conexão, permite a autenticação e inclui muitas outras características.

O PPP dispõe de três recursos:

1. Um método de enquadramento que delineia de forma não-ambígua o fim de um quadro e o início do quadro seguinte, O formato do quadro também lida com a detecção de erros.

2. Um protocolo de controle de enlace usado para ativar linhas, testá-las, negociar opções e desativá-las novamente quando não forem mais necessárias. Esse protocolo é denominado LCP (Link Control Protocol — protocolo de controle de enlace). Ele admite circuitos síncronos e assíncronos, e também codificações orientadas a bytes e a bits.

3. Uma maneira de negociar as opções da camada de rede de modo independente do protocolo da camada de rede a ser utilizado. O método escolhido deve ter um NCP (Network Control Protocol — protocolo de controle de rede) diferente para cada camada de rede aceita.

Para verificar como esses itens se encaixam uns com os outros, considere a situação típica em que um usuário doméstico se conecta a um provedor de serviços da Internet para transformar um PC doméstico em um host temporário da Internet. Primeiro, o PC chama o roteador do provedor por meio de um modem. Depois que o modem do roteador atende ao telefone e estabelece uma conexão física, o PC envia ao roteador uma série de pacotes LCP no campo de carga útil de um ou mais quadros PPP. Esses pacotes e suas respostas selecionam os parâmetros PPP a serem utilizados.

Quando todos esses parâmetros estão corretamente definidos de comum acordo, uma série de pacotes NCP é enviada para configurar a camada de rede. Em geral, o PC quer executar uma pilha de protocolos TCP/IP, e assim necessita de um endereço IP. Como não há endereços IP suficientes, normalmente cada provedor da Internet obtém um bloco de endereços e, em seguida, atribui dinamicamente um endereço a cada PC recém-conectado durante sua sessão de login. Se tiver n endereços IP, um provedor poderá ter até n máquinas conectadas simultaneamente, mas sua base total de clientes poderá estar muito acima desse número. O NCP para o IP atribui os endereços IP.

Nesse momento, o PC passa a ser um host da Internet e pode enviar e receber pacotes IP, da mesma forma que os hosts fisicamente conectados. Quando o usuário termina, o NCP é utilizado para desativar a conexão da camada de rede e liberar o endereço IP. Em seguida, o LCP encerra a conexão da camada de enlace de dados. Finalmente, o computador solicita que o modem desligue o telefone, liberando a conexão da camada física.

O formato de quadro PPP foi definido de modo a ter uma aparência semelhante ao formato de quadro HDLC, pois não há motivo algum para a definição de um novo padrão. A principal diferença entre o PPP e o HDLC é que o primeiro é orientado a caracteres, e não a bits. Especificamente, o PPP utiliza a técnica de inserção de bytes em linhas de discagem por modem; portanto, todos os quadros representam um número inteiro de bytes. Não é possível enviar um quadro formado por 30,25 bytes, como ocorre com o HDLC. Os quadros PPP não só podem ser enviados por linhas telefônicas de acesso por discagem, mas também podem ser enviados por linhas SONET ou por verdadeiras linhas HDLC orientadas a bits (por exemplo, para as conexões entre roteadores). A Figura 3.27 mostra o formato do quadro PPP.

[image: image10.png]Bytes 1 1 1 1ou2 Variavel 2o0u4 1
{{

b2

Flag Enderego | Controle Protocolo | Carga i

01111110 | 11111111} 00000011

Total de Flag
verificagdo | 01111110

{(
37

Figura 3.27 O formato completo do quadro PPP para a operagéo no modo ndo-numerado

Todos os quadros PPP começam pelo byte de flag padrão do HDLC (01111110), que é complementado por inserção de bytes se ocorrer dentro do campo de carga útil. Em seguida, temos o campo Endereço, que sempre é definido como o valor binário 11111111, indicando que todas as estações devem aceitar o quadro. A utilização desse valor evita o problema da necessidade de atribuição de endereços de enlace de dados.

O campo Controle é exibido após o campo Endereço e seu valor padrão é 00000011. Esse valor indica um quadro não-numerado. Em outras palavras, o PPP não oferece uma transmissão confiável com o uso de números de seqüência e confirmações como o padrão. Em ambientes ruidosos, como em redes sem fio, pode ser utilizada a transmissão confiável que emprega o modo numerado. Os detalhes exatos são definidos na RFC 1663 más, na prática, raramente ele é utilizado.

Como os campos Endereço e Controle são sempre constantes na configuração padrão, o LCP fornece o mecanismo necessário para que as duas partes negociem uma opção que os omita totalmente e que economize 2 bytes por quadro.

O quarto campo do quadro PPP é o campo Protocolo. Sua tarefa é informar o tipo de pacote que se encontra no campo Carga útil. Os códigos são definidos para representar os protocolos LCP, NCP, IP, IPX, AppleTalk e outros. Os protocolos que começam por um bit 0 são os protocolos da camada de rede, como o IP,o IPX, o OSI, o CLNP, o XNS. Aqueles que começam por um bit 1 são utiliza dos na negociação de outros protocolos. Entre eles estão incluídos o LCP e um NCP diferente para cada protocolo da camada de rede admitido. O tamanho padrão do campo Protocolo é 2 bytes, mas é possível negociar uma redução para 1 byte, utilizando-se o LCP.
O campo Carga útil tem comprimento variável, podendo se estender até o tamanho máximo negociado. Se o comprimento não for negociado com o uso do LCP durante a configuração da linha, será empregado um comprimento padrão de 1.500 bytes. Poderá haver um preenchimento logo após a carga útil, caso seja necessário.

Depois do campo Carga Útil, temos o campo Total de verificação, que normalmente tem 2 bytes, embora seja possível negociar um total de verificação de 4 bytes.

Em suma, o PPP é um mecanismo de enquadramento multiprotocolo, adequado para a utilização em modems, em linhas seriais de bits HDLC, na SONET e em outras camadas físicas. Ele aceita a detecção de erros, a negociação de opções, a compactação de cabeçalhos e, opcionalmente, a transmissão confiável com o uso de um formato de quadro do tipo HDLC.

Agora, vamos deixar o estudo do formato do quadro PPP para examinar a maneira como as linhas são ativadas e desativadas. O diagrama (simplificado) representado na Figura 3.28 mostra as fases pelas quais uma linha passa ao ser ativada, utilizada e desativada novamente. Essa seqüência se aplica tanto às conexões de modem quanto às conexões entre roteadores.

[image: image11.png]Portadora Os dois lados concordam Autenticagéo
detectada quanto as opgdes bem-sucedida

Establish }—>@thenticate

Falhou

Net
Falhou © @

Terminate }</—4—L Open H\

Portadora Concluido Configuragéo
desativada NCP

Figura 3.28 Um diagrama simplificado de fases para ativar e desativar uma linha

O protocolo começa com a linha no estado DEAD, o que significa que não há nenhuma portadora da camada física presente e não existe qualquer conexão da camada física. Depois de estabelecida a conexão física, a linha passa para a fase ESTABLISH. Nesse ponto, começa a negociação de opções do LCP que, se for bem-sucedida, levará à fase AUTHENTICATE. Agora, as duas partes poderão verificar suas identidades mutuamente, se desejarem. Quando a fase NETWORK é alcançada, o protocolo NCP apropriado é invocado para configurar a camada de rede. Se a configuração for bem-sucedida, a fase OPEN é alcançada e o transporte de dados pode ser feito. Quando o transporte de dados é concluído, a linha entra na fase TERMINATE e, de lá, volta a DEAD quando a portadora é desativada.

O LCP é utilizado para negociar opções de protocolo de enlace de dados durante a fase ESTABLISH. Na verdade, ele não está preocupado com as opções propriamente ditas, mas com o mecanismo de negociação. O protocolo LCP proporciona um meio para que o processo inicial faça uma proposta que será aceita ou rejeitada, total ou parcialmente, pelo processo de resposta. Ele também permite que os dois processos testem a qualidade da linha, verificando se ela é boa o suficiente para estabelecer uma conexão. Por fim, o protocolo LCP também permite que as linhas sejam desativadas quando não forem mais necessárias.

Onze tipos de quadros LCP são definidos na RFC 1661 e estão listados na Figura 3.29. Os quatro tipos Configure- permitem que o iniciador (I) proponha valores de opções e que o respondedor (R) os aceite ou rejeite. Nesse último caso, o respondedor pode fazer uma proposta alternativa ou anunciar que não está absolutamente disposto a negociar certas opções. As opções que estiverem sendo negociadas e seus valores propostos fazem parte dos quadros LCP.

	Nome
	Sentido
	Descrição

	Configure-request
	I —> R
	Lista de opções e valores propostos

	Configure-ack
	I <— R
	Todas as opções são aceitas

	Configure-nak
	I <— R
	Algumas opções não são aceitas

	Configure-reject
	I <— R
	Algumas opções não são negociáveis

	Terminate-request
	I —> R
	Solicita a desativação da linha

	Terminate-ack
	I <— R
	0k, linha desativada

	Code-reject
	I <— R
	Solicitação desconhecida recebida

	Protocol-reject
	I <— R
	Protocolo desconhecido solicitado

	Echo-request
	I —> R
	Favor enviar este quadro de volta

	Echo-reply
	I <— R
	Aqui está o quadro de volta

	Discard-request
	I —> R
	Simplesmente descartar este quadro (para fins de teste)

Figura 3.29 Os tipos de quadros LCP
Os códigos Terminate- são utilizados para desativar uma linha quando ela não é mais necessária. Os códigos Code-reject e Protocol-reject são utilizados pelo respondedor para indicar que recebeu algo que não consegue entender. Essa situação pode significar que ocorreu um erro de transmissão não-detectado, embora seja mais provável que ela signifique que o iniciador e o respondedor estão executando versões diferentes do protocolo LCP. Os tipos Echo- são utilizados para testar a qualidade da linha. Por fim, utiliza-se Discard-request para ajudar a depuração. Se uma das extremidades estiver com problemas para obter bits do cabo, o programador poderá utilizar esse tipo para teste. Se conseguir transmitir, o quadro será simplesmente descartado pelo receptor e não será executada qualquer outra ação que possa confundir a pessoa que estiver realizando o teste.

As opções que podem ser negociadas incluem a definição do tamanho máximo da carga útil para os quadros de dados, a ativação da autenticação e a escolha do protocolo a ser utilizado, a ativação do monitoramento da qualidade da linha durante a operação normal e a seleção de diversas opções de compactação de cabeçalhos.

De modo geral, há muito pouco a ser dito sobre os protocolos NCP. Cada um deles é específico para algum protocolo da camada de rede e permite que sejam feitas solicitações de configuração específicas para cada protocolo. Por exemplo, no caso do IP, a atribuição de endereços dinâmicos é a possibilidade mais importante.
5. Conclusão

Como foi visto no decorrer do trabalho s protocolos elementares de enlace de dados são utilizados garantir que os pacotes transmitidos na rede sejam entregues corretamente a camada de rede, sem apresentarem algum defeito ou duplicação. Ele é dividido basicamente em 3 protocolos simplex: Simplex sem restrição que é um protocolo cujo a única função é enviar dados o mais rápido possível, e é utilizado em um ambiente utópico, onde nada de errado acontece; O simplex stop-and-wait é um protocolo um pouco mais evoluído, ele leva em consideração a limitação do receptor, e oferece uma solução utilizando um feedback para evitar a sobrecarga do mesmo; E por fim o simplex para um canal com ruído que leva em consideração um ambiente normal em que os pacotes podem ser danificados, perdidos e até mesmo duplicado, como solução ele oferece um timer e um número de seqüência para contorna esses problemas.
5. PERGUNTAS
Separem esta pergunta em 3: Uma sobre protocolos simplex sem restrição, outra sobre simplex stop-and-wait e por ultimo uma sobre simplex para canal com ruído
1) Qual a diferença entre os protocolos simplex sem restrição, simplex stop-and-wait e simplex para canal com ruído?

R: Protocolo Simplex sem restrição: É um protocolo simples, cuja única função é de transferir o pacote de uma maquina à outra, ideal para ser usado em um ambiente perfeito (uma utopia, pq ñ existe ambientes perfeitos), porém apresenta deficiência em um ambiente real;
Protocolo Simplex stop-and-wait: É uma evolução do protocolo simplex sem restrição, ele é um pouco mais realista e consideram um ambiente em que o receptor é limitado, então é implementado um feedback, que é um quadro de confirmação enviado para o transmissor para que ele possa enviar o próximo quadro, evitando assim sobrecarga do receptor.
Protocolo Simplex para um canal com ruído: Este é um protocolo completo que alem de levar em consideração a limitação do receptor, também leva em consideração o dano, perca ou duplicação de um pacote, ou seja, um canal imperfeito que pode danificar ou perde um pacote. Para solucionar esses problemas é adotada a utilização de um timer e de um número de seqüência. O timer é ativado quando o transmissor envia um pacote, se uma confirmação do receptor dizendo que o pacote foi recebido não chegar até o fim do timer o transmissor faz a retransmissão desse quadro; o número de seqüência é utilizado tanto pelo transmissor quanto pelo receptor, no transmissor ele indica qual quadro vai ser enviado e no receptor qual quadro vai ser recebido.
1) Qual o maior problema encontrado nos protocolos de janelas deslizantes de 1bit?

R. Desperdício da largura de banda do canal de transmissão devido ao fato que neste protocolo o próxima quadro só é enviado após a confirmação do pacote enviado anteriormente.

2) No protocolo “Go back n” qual o procedimento adotado pela camada de enlace quando sua janela transmissora chega ao máximo?

R. Desativar o recebimento da camada de rede até que outro buffer esteja livre.

3) Qual a melhoria introduzida no protocolo go back n em relação ao protocolo de 1 bit?

R. Uma janela de transmissão com n seqüência possibilitando o envia de vários quadros e uso de piggybacking.

4) No protocolo de retransmissão seletiva qual o procedimento adotado pela camada de enlace transmissora ao receber uma NACK do quadro 2 após já ter enviado até o quadro 7?

R. Retransmitir apenas o quadro 2;

5) Qual a melhoria introduzida no protocolo de retransmissão seletiva em relação ao protocolo go back n?

R. Tamanho da janela o receptor maior que 1 e uso da confirmação negativa NACK.

